Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_6_a13, author = {V. P. Grishukhin and V. I. Danilov and G. A. Koshevoy}, title = {Unimodular {Systems} of {Vectors} are {Embeddable} in the $(0,1)${-Cube}}, journal = {Matemati\v{c}eskie zametki}, pages = {938--941}, publisher = {mathdoc}, volume = {88}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/} }
TY - JOUR AU - V. P. Grishukhin AU - V. I. Danilov AU - G. A. Koshevoy TI - Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube JO - Matematičeskie zametki PY - 2010 SP - 938 EP - 941 VL - 88 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/ LA - ru ID - MZM_2010_88_6_a13 ER -
V. P. Grishukhin; V. I. Danilov; G. A. Koshevoy. Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 938-941. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/
[1] A. Skhreiver, Teoriya lineinogo i tselochislennogo programmirovaniya, v. 2, Mir, M., 1991 | MR | Zbl
[2] V. Danilov, G. Koshevoy, K. Murota, Math. Social Sci., 41:3 (2001), 251–273 | DOI | MR | Zbl
[3] V. I. Danilov, G. A. Koshevoy, Adv. Math., 189:2 (2004), 301–324 | DOI | MR | Zbl
[4] R. M. Erdahl, S. S. Ryshkov, European J. Combin., 15:5 (1994), 459–481 | DOI | MR | Zbl
[5] P. D. Seymour, J. Combin. Theory Ser. B, 28:3 (1980), 305–359 | DOI | MR | Zbl
[6] M. Dutour Sikirić, V. Grishukhin, European J. Combin., 30:4 (2009), 853–865 | DOI | MR | Zbl
[7] V. Danilov, V. Grishukhin, European J. Combin., 20:6 (1999), 507–526 | DOI | MR | Zbl
[8] G. B. Faulkner, D. H. Younger, Discrete Math., 7:1-2 (1974), 67–74 | DOI | MR | Zbl