Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 938-941
Voir la notice de l'article provenant de la source Math-Net.Ru
Keywords:
unimodular system of vectors, dicing, $(0,1)$-cube.
@article{MZM_2010_88_6_a13,
author = {V. P. Grishukhin and V. I. Danilov and G. A. Koshevoy},
title = {Unimodular {Systems} of {Vectors} are {Embeddable} in the $(0,1)${-Cube}},
journal = {Matemati\v{c}eskie zametki},
pages = {938--941},
publisher = {mathdoc},
volume = {88},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/}
}
TY - JOUR AU - V. P. Grishukhin AU - V. I. Danilov AU - G. A. Koshevoy TI - Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube JO - Matematičeskie zametki PY - 2010 SP - 938 EP - 941 VL - 88 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/ LA - ru ID - MZM_2010_88_6_a13 ER -
V. P. Grishukhin; V. I. Danilov; G. A. Koshevoy. Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 938-941. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/