Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 938-941

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: unimodular system of vectors, dicing, $(0,1)$-cube.
@article{MZM_2010_88_6_a13,
     author = {V. P. Grishukhin and V. I. Danilov and G. A. Koshevoy},
     title = {Unimodular {Systems} of {Vectors} are {Embeddable} in the $(0,1)${-Cube}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {938--941},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/}
}
TY  - JOUR
AU  - V. P. Grishukhin
AU  - V. I. Danilov
AU  - G. A. Koshevoy
TI  - Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube
JO  - Matematičeskie zametki
PY  - 2010
SP  - 938
EP  - 941
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/
LA  - ru
ID  - MZM_2010_88_6_a13
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%A V. I. Danilov
%A G. A. Koshevoy
%T Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube
%J Matematičeskie zametki
%D 2010
%P 938-941
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/
%G ru
%F MZM_2010_88_6_a13
V. P. Grishukhin; V. I. Danilov; G. A. Koshevoy. Unimodular Systems of Vectors are Embeddable in the $(0,1)$-Cube. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 938-941. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a13/