On the Fiber Structure of Symmetry Invariance Sets of Solutions to Quasilinear Equations
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 924-934.

Voir la notice de l'article provenant de la source Math-Net.Ru

Known results about the unique continuation of solutions of anisotropic linear and weakly nonlinear differential equations and the extension of the invariance property of these solutions are applied to prove theorems about the fiberwise quasianalyticity and the fiber structure of sets of symmetry invariance of solutions to quasilinear equations.
Keywords: symmetry invariance, quasilinear equation, weakly nonlinearity, quasianalyticity, weighted derivative, germ of solution.
Mots-clés : solution continuation
@article{MZM_2010_88_6_a11,
     author = {N. A. Shananin},
     title = {On the {Fiber} {Structure} of {Symmetry} {Invariance} {Sets} of {Solutions} to {Quasilinear} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {924--934},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a11/}
}
TY  - JOUR
AU  - N. A. Shananin
TI  - On the Fiber Structure of Symmetry Invariance Sets of Solutions to Quasilinear Equations
JO  - Matematičeskie zametki
PY  - 2010
SP  - 924
EP  - 934
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a11/
LA  - ru
ID  - MZM_2010_88_6_a11
ER  - 
%0 Journal Article
%A N. A. Shananin
%T On the Fiber Structure of Symmetry Invariance Sets of Solutions to Quasilinear Equations
%J Matematičeskie zametki
%D 2010
%P 924-934
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a11/
%G ru
%F MZM_2010_88_6_a11
N. A. Shananin. On the Fiber Structure of Symmetry Invariance Sets of Solutions to Quasilinear Equations. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 924-934. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a11/

[1] N. A. Shananin, “Ob odnoznachnom prodolzhenii reshenii differentsialnykh uravnenii so vzveshennymi proizvodnymi”, Matem. sb., 191:3 (2000), 113–142 | MR | Zbl

[2] N. A. Shananin, “O chastichnoi kvazianalitichnosti obobschennykh reshenii slabo nelineinykh differentsialnykh uravnenii so vzveshennymi proizvodnymi”, Matem. zametki, 68:4 (2000), 608–619 | MR | Zbl

[3] N. A. Shananin, “O rasprostranenii invariantnosti rostkov reshenii slabo nelineinykh differentsialnykh uravnenii so vzveshennymi proizvodnymi”, Matem. zametki, 71:1 (2002), 135–143 | MR | Zbl

[4] A. P. Calderón, “Uniqueness in Cauchy problem for partial differential equations”, Amer. J. Math., 80:1 (1958), 16–36 | DOI | MR | Zbl

[5] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, V 4-kh t., Mir, M., 1986–1988 | MR | MR | MR | MR | Zbl | Zbl

[6] Yu. V. Egorov, Lineinye differentsialnye uravneniya glavnogo tipa, Nauka, M., 1984 | MR | Zbl

[7] N. A. Shananin, “On partial quasi-analyticity of the set of solutions of a set of the Navier–Stokes-type equations”, J. Math. Sci. (New York), 110:2 (2002), 2467–2475 | DOI | MR | Zbl

[8] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[9] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl

[10] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[11] A. M. Vinogradov, I. S. Krasilschik (red.), Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997