On Log-Convexity for Differences of Mixed Symmetric Means
Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 811-821.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently S. Simić has proved log-convexity for differences of power means. We prove a generalization of his result. Namely, log-convexity for differences of mixed symmetric means is proved.
Keywords: log-convexity, mixed means, symmetric power means.
@article{MZM_2010_88_6_a1,
     author = {M. Anwar and J. Pe\v{c}ari\'c},
     title = {On {Log-Convexity} for {Differences} of {Mixed} {Symmetric} {Means}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {811--821},
     publisher = {mathdoc},
     volume = {88},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a1/}
}
TY  - JOUR
AU  - M. Anwar
AU  - J. Pečarić
TI  - On Log-Convexity for Differences of Mixed Symmetric Means
JO  - Matematičeskie zametki
PY  - 2010
SP  - 811
EP  - 821
VL  - 88
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a1/
LA  - ru
ID  - MZM_2010_88_6_a1
ER  - 
%0 Journal Article
%A M. Anwar
%A J. Pečarić
%T On Log-Convexity for Differences of Mixed Symmetric Means
%J Matematičeskie zametki
%D 2010
%P 811-821
%V 88
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a1/
%G ru
%F MZM_2010_88_6_a1
M. Anwar; J. Pečarić. On Log-Convexity for Differences of Mixed Symmetric Means. Matematičeskie zametki, Tome 88 (2010) no. 6, pp. 811-821. http://geodesic.mathdoc.fr/item/MZM_2010_88_6_a1/

[1] T. Hara, M. Uchiyama, S.-E. Takahashi, “A refinement of various mean inequalities”, J. Inequal. Appl., 2:4 (1998), 387–395 | DOI | MR | Zbl

[2] J. E. Pečarić, V. Volenec, “Interpolation of the Jensen inequality with some applications”, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 197:8-10 (1988), 463–467 | MR | Zbl

[3] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Math. Sci. Engrg., 187, Academic Press, Boston, MA, 1992 | MR | Zbl

[4] D. S. Mitrinović, J. E. Pečarić, “Unified treatment of some inequalities for mixed means”, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 197:8-10 (1988), 391–397 | MR | Zbl

[5] M. Anwar, J. Pečarić, “New means of Cauchy's type”, J. Inequal. Appl., 2008, Article ID 163202 | MR | Zbl

[6] T. Popoviciu, “Sur certaines inégalités qui caractérisent les fonctions convexes”, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. Ia Mat. (N.S.), 11B (1965), 155–164 | MR | Zbl

[7] J. E. Pečarić, “Remark on an inequality of S. Gabler”, J. Math. Anal. Appl., 184:1 (1994), 19–21 | DOI | MR | Zbl

[8] S. Simic, “On logarithmic convexity for differences of power means”, J. Inequal. Appl., 2007, Article ID 37359 | MR | Zbl

[9] P. M. Vasić, L. R. Stanković, “Some inequalities for convex functions”, Math. Balkanica, 6:44 (1976), 281–288 | MR | Zbl

[10] J. C. Burkill, “The concavity of discrepancies in inequalities of the means and of Hölder”, J. London Math. Soc. (2), 7 (1974), 617–626 | DOI | MR | Zbl

[11] V. J. Baston, “On some Hlawka-type inequalities of Burkill”, J. London Math. Soc. (2), 12 (1976), 402–404 | DOI | MR | Zbl

[12] J. Pečarić, D. Svrtan, “Unified approach to refinements of Jensen's inequalities”, Math. Inequal. Appl., 5:1 (2002), 45–47 | MR | Zbl

[13] J. Pečarić, D. Svrtan, “New refinements of the Jensen inequalities based on samples with repetitions”, J. Math. Anal. Appl., 222:2 (1998), 365–373 | DOI | MR | Zbl

[14] J. E. Pečarić, S. S. Dragomir, “A refinement of Jensen inequality and applications”, Studia Univ. Babeş-Bolyai Math., 34:1 (1989), 15–19 | MR | Zbl

[15] I. Raşa, “On the monotonicity of sequences of Bernstein–Schnabl operators”, Anal. Numér. Théor. Approx., 17:2 (1988), 185–187 | MR | Zbl