A Generalization of Jentzsch's Theorem
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 753-758

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the roots of polynomials given by a linear summation method for partial sums of the Fourier series.
Keywords: Jentzsch's theorem, Fourier series, Bernstein polynomial, Cauchy bound, Vitali's theorem, Hurwitz theorem.
Mots-clés : polynomial, Laurent series
@article{MZM_2010_88_5_a9,
     author = {E. A. Lebedeva},
     title = {A {Generalization} of {Jentzsch's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {753--758},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a9/}
}
TY  - JOUR
AU  - E. A. Lebedeva
TI  - A Generalization of Jentzsch's Theorem
JO  - Matematičeskie zametki
PY  - 2010
SP  - 753
EP  - 758
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a9/
LA  - ru
ID  - MZM_2010_88_5_a9
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%T A Generalization of Jentzsch's Theorem
%J Matematičeskie zametki
%D 2010
%P 753-758
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a9/
%G ru
%F MZM_2010_88_5_a9
E. A. Lebedeva. A Generalization of Jentzsch's Theorem. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 753-758. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a9/