Open Mapping Theorem for Spaces of Weakly Additive Homogeneous Functionals
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 683-688.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish that if $X$ and $Y$ are metric compacta and $f\colon X\to Y$ is a continuous surjective mapping, then the openness of the mapping $OH(f)\colon OH(X)\to OH(Y)$ of spaces of weakly additive homogeneous functionals is equivalent to the openness of $f$.
Keywords: open mapping theorem, weakly additive homogeneous functional, probability measure, topology of pointwise convergence.
Mots-clés : metric compactum
@article{MZM_2010_88_5_a4,
     author = {A. A. Zaitov},
     title = {Open {Mapping} {Theorem} for {Spaces} of {Weakly} {Additive} {Homogeneous} {Functionals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {683--688},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a4/}
}
TY  - JOUR
AU  - A. A. Zaitov
TI  - Open Mapping Theorem for Spaces of Weakly Additive Homogeneous Functionals
JO  - Matematičeskie zametki
PY  - 2010
SP  - 683
EP  - 688
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a4/
LA  - ru
ID  - MZM_2010_88_5_a4
ER  - 
%0 Journal Article
%A A. A. Zaitov
%T Open Mapping Theorem for Spaces of Weakly Additive Homogeneous Functionals
%J Matematičeskie zametki
%D 2010
%P 683-688
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a4/
%G ru
%F MZM_2010_88_5_a4
A. A. Zaitov. Open Mapping Theorem for Spaces of Weakly Additive Homogeneous Functionals. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 683-688. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a4/

[1] S. Z. Ditor, L. Eifler, “Some open mapping theorems for measures”, Trans. Amer. Math. Soc., 164 (1972), 287–293 | DOI | MR | Zbl

[2] L. Q. Eifler, “Open mapping theorems for probability measures on metric spaces”, Pacific J. Math., 66:1 (1976), 89–97 | MR | Zbl

[3] L. B. Shapiro, “Ob operatorakh prodolzheniya funktsii i normalnykh funktorakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 1, 35–42 | MR | Zbl

[4] G. F. Dzhabbarov, Lokalno slabo separabelnye prostranstva i funktor slabo additivnykh polozhitelno-odnorodnykh funktsionalov, Dis. $\dots$ kand. fiz.-matem. nauk, Natsionalnyi universitet Uzbekistana im. M. Ulugbeka, Tashkent, 2006

[5] V. V. Fedorchuk, “Troiki beskonechnykh iteratsii metrizuemykh funktorov”, Izv. AN SSSR. Ser. matem., 54:2 (1990), 396–417 | MR | Zbl