Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 662-672
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the asymptotics of the spectrum of the boundary-value problem
$$
-y''-\lambda\rho y=0,\qquad y(0)=y(1)=0,
$$
for the case in which the weight $\rho\in\mathring W_2^{-1}[0,1]$ is the generalized (in the sense of distributions) derivative of a self-similar function $P\in L_2[0,1]$ of zero spectral order.
Mots-clés :
Sturm–Liouville problem, Sturm–Liouville problem.
Keywords: asymptotics of eigenvalues, self-similar function, spectral order of a function
Keywords: asymptotics of eigenvalues, self-similar function, spectral order of a function
@article{MZM_2010_88_5_a2,
author = {A. A. Vladimirov and I. A. Sheipak},
title = {Asymptotics of the {Eigenvalues} of the {Sturm--Liouville} {Problem} with {Discrete} {Self-Similar} {Weight}},
journal = {Matemati\v{c}eskie zametki},
pages = {662--672},
publisher = {mathdoc},
volume = {88},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/}
}
TY - JOUR AU - A. A. Vladimirov AU - I. A. Sheipak TI - Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight JO - Matematičeskie zametki PY - 2010 SP - 662 EP - 672 VL - 88 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/ LA - ru ID - MZM_2010_88_5_a2 ER -
%0 Journal Article %A A. A. Vladimirov %A I. A. Sheipak %T Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight %J Matematičeskie zametki %D 2010 %P 662-672 %V 88 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/ %G ru %F MZM_2010_88_5_a2
A. A. Vladimirov; I. A. Sheipak. Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 662-672. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/