Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 662-672

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotics of the spectrum of the boundary-value problem $$ -y''-\lambda\rho y=0,\qquad y(0)=y(1)=0, $$ for the case in which the weight $\rho\in\mathring W_2^{-1}[0,1]$ is the generalized (in the sense of distributions) derivative of a self-similar function $P\in L_2[0,1]$ of zero spectral order.
Mots-clés : Sturm–Liouville problem, Sturm–Liouville problem.
Keywords: asymptotics of eigenvalues, self-similar function, spectral order of a function
@article{MZM_2010_88_5_a2,
     author = {A. A. Vladimirov and I. A. Sheipak},
     title = {Asymptotics of the {Eigenvalues} of the {Sturm--Liouville} {Problem} with {Discrete} {Self-Similar} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {662--672},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/}
}
TY  - JOUR
AU  - A. A. Vladimirov
AU  - I. A. Sheipak
TI  - Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight
JO  - Matematičeskie zametki
PY  - 2010
SP  - 662
EP  - 672
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/
LA  - ru
ID  - MZM_2010_88_5_a2
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%A I. A. Sheipak
%T Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight
%J Matematičeskie zametki
%D 2010
%P 662-672
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/
%G ru
%F MZM_2010_88_5_a2
A. A. Vladimirov; I. A. Sheipak. Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 662-672. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/