Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 662-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotics of the spectrum of the boundary-value problem $$ -y''-\lambda\rho y=0,\qquad y(0)=y(1)=0, $$ for the case in which the weight $\rho\in\mathring W_2^{-1}[0,1]$ is the generalized (in the sense of distributions) derivative of a self-similar function $P\in L_2[0,1]$ of zero spectral order.
Mots-clés : Sturm–Liouville problem, Sturm–Liouville problem.
Keywords: asymptotics of eigenvalues, self-similar function, spectral order of a function
@article{MZM_2010_88_5_a2,
     author = {A. A. Vladimirov and I. A. Sheipak},
     title = {Asymptotics of the {Eigenvalues} of the {Sturm--Liouville} {Problem} with {Discrete} {Self-Similar} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {662--672},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/}
}
TY  - JOUR
AU  - A. A. Vladimirov
AU  - I. A. Sheipak
TI  - Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight
JO  - Matematičeskie zametki
PY  - 2010
SP  - 662
EP  - 672
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/
LA  - ru
ID  - MZM_2010_88_5_a2
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%A I. A. Sheipak
%T Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight
%J Matematičeskie zametki
%D 2010
%P 662-672
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/
%G ru
%F MZM_2010_88_5_a2
A. A. Vladimirov; I. A. Sheipak. Asymptotics of the Eigenvalues of the Sturm--Liouville Problem with Discrete Self-Similar Weight. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 662-672. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a2/

[1] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | MR | Zbl

[2] A. A. Vladimirov, I. A. Sheipak, “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 88–98 | MR

[3] M. G. Krein, “Opredelenie plotnosti neodnorodnoi simmetrichnoi struny po spektru ee chastot”, Dokl. AN SSSR, 76:3 (1951), 345–348 | MR | Zbl

[4] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[5] I. A. Sheipak, Osobye tochki samopodobnoi funktsii nulevogo spektralnogo poryadka. Samopodobnaya struna Stiltesa, arXiv: math.FA/0711.0451

[6] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967 | MR | Zbl

[7] M. Levitin, D. Vassiliev, “Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals”, Proc. London Math. Soc. (3), 72:1 (1996), 188–214 | DOI | MR | Zbl

[8] A. A. Vladimirov, “O vychislenii sobstvennykh znachenii zadachi Shturma–Liuvillya s fraktalnym indefinitnym vesom”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1350–1355 | MR