On the Singular Solutions of the Korteweg--de Vries Equation
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 770-777.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two classes of singular solutions of the KdV equation: singular solutions of the Cauchy problem and singular traveling waves. In both cases, we establish sufficient conditions for their existence.
Keywords: Korteweg–de Vries equation, Cauchy problem, traveling wave, nonlinear capacity, Hölder inequality.
Mots-clés : singular solution
@article{MZM_2010_88_5_a11,
     author = {S. I. Pokhozhaev},
     title = {On the {Singular} {Solutions} of the {Korteweg--de} {Vries} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {770--777},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a11/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On the Singular Solutions of the Korteweg--de Vries Equation
JO  - Matematičeskie zametki
PY  - 2010
SP  - 770
EP  - 777
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a11/
LA  - ru
ID  - MZM_2010_88_5_a11
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On the Singular Solutions of the Korteweg--de Vries Equation
%J Matematičeskie zametki
%D 2010
%P 770-777
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a11/
%G ru
%F MZM_2010_88_5_a11
S. I. Pokhozhaev. On the Singular Solutions of the Korteweg--de Vries Equation. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 770-777. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a11/

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[2] T. Kappeler, J. Pöschel, KdV KAM, Ergeb. Math. Grenzgeb. (3), 45, Springer-Verlag, Berlin, 2003 | MR | Zbl

[3] A. Sjöberg, “On the Korteweg–de Vries equation: existence and uniqueness”, J. Math. Anal. Appl., 29:3 (1970), 569–579 | DOI | MR | Zbl

[4] T. Kato, “The Cauchy problem for the Korteweg–de Vries equation”, Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar (Paris, 1978/1979), v. I, Res. Notes in Math., 53, Pitman, Boston, MA, 1980, 293–307 | MR | Zbl

[5] S. N. Kruzhkov, A. V. Faminskii, “Obobschennye resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza”, Matem. sb., 120:3 (1983), 396–425 | MR | Zbl

[6] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | Zbl

[7] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[8] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[9] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, “Singulyarnye resheniya uravneniya KdV i metod obratnoi zadachi”, Differentsialnaya geometriya, gruppy Li i mekhanika. VI, Zap. nauchn. sem. LOMI, 133, Izd-vo «Nauka», Leningrad. otd., L., 1984, 17–37 | MR | Zbl

[10] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl