Two Modularity Lifting Conjectures for Families of Siegel Modular Forms
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 565-574.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a prime $p$ and a positive integer $n$, using certain lifting procedures, we study some constructions of $p$-adic families of Siegel modular forms of genus $n$. Describing $L$-functions attached to Siegel modular forms and their analytic properties, we formulate two conjectures on the existence of the modularity liftings from $\operatorname{GSp}_{r}\times \operatorname{GSp}_{2m}$ to $\operatorname{GSp}_{r+2m}$ for some positive integers $r$ and $m$.
Keywords: $p$-adic families, Siegel modular forms, Hecke operators, Siegel–Eisenstein series, Ikeda–Miyawaki lift.
@article{MZM_2010_88_4_a7,
     author = {A. A. Panchishkin},
     title = {Two {Modularity} {Lifting} {Conjectures} for {Families} of {Siegel} {Modular} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {565--574},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/}
}
TY  - JOUR
AU  - A. A. Panchishkin
TI  - Two Modularity Lifting Conjectures for Families of Siegel Modular Forms
JO  - Matematičeskie zametki
PY  - 2010
SP  - 565
EP  - 574
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/
LA  - ru
ID  - MZM_2010_88_4_a7
ER  - 
%0 Journal Article
%A A. A. Panchishkin
%T Two Modularity Lifting Conjectures for Families of Siegel Modular Forms
%J Matematičeskie zametki
%D 2010
%P 565-574
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/
%G ru
%F MZM_2010_88_4_a7
A. A. Panchishkin. Two Modularity Lifting Conjectures for Families of Siegel Modular Forms. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 565-574. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/

[1] M. M. Vishik, Yu. I. Manin, “$p$-adicheskie ryady Gekke mnimykh kvadratichnykh polei”, Matem. sb., 95:3 (1974), 357–383 | MR | Zbl

[2] N. M. Katz, “$p$-Adic $L$-functions for CM-fields”, Invent. Math., 49:3 (1978), 199–297 | DOI | MR | Zbl

[3] J.-P. Serre, “Formes modulaires et fonctions zêta $p$-adiques”, Modular Functions of one Variable, III, Lecture Notes in Math., 350, Springer-Verlag, Berlin, 1973, 191–268 | DOI | MR | Zbl

[4] A. Weil, “On a certain type of characters of the idèle-class group of an algebraic number-field”, Proceedings of the International Symposium on Algebraic Number Theory (Tokyo Nikko, 1955), Sci. Council of Japan, Tokyo, 1956, 1–7 | MR | Zbl

[5] M. Deuring, “Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt., 1953, 85–94 ; “Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. II”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt., 1955, 13–42 ; “Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. III”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt., 1956, 37–76 ; “Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. IV”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt., 1957, 55–80 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[6] H. Hida, Elementary Theory of $L$-Functions and Eisenstein Series, London Math. Soc. Stud. Texts, 26, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[7] A. N. Andrianov, “Eilerovy proizvedeniya, otvechayuschie modulyarnym formam Zigelya roda 2”, UMN, 29:3 (1974), 43–110 | MR | Zbl

[8] E. Hecke, “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I. II”, Math. Ann., 114:1 (1937), 1–28 | DOI | MR | Zbl

[9] M. Asgari, R. Schmidt, “Siegel modular forms and representations”, Manuscripta Math., 104:2 (2001), 173–200 | DOI | MR | Zbl

[10] R. A. Rankin, “Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. I. The zeros of the function $\sum^\infty_{n=1}\tau(n)/n^s$ on the line $\Re\,s=13/2$”, Proc. Camb. Phil. Soc, 35 (1939), 351–356 | DOI | MR | Zbl

[11] G. Shimura, “On the Holomorphy of certain Dirichlet Series”, Proc. London Math. Soc. (3), 31:1 (1975), 79–98 | DOI | MR | Zbl

[12] A. N. Andrianov, V. L. Kalinin, “Ob analiticheskikh svoistvakh standartnykh dzeta-funktsii zigelevykh modulyarnykh form”, Matem. sb., 106:3 (1978), 323–339 | MR | Zbl

[13] S. Böcherer, “Über die Funktionalgleichung Automorpher $L$-Funktionnen zur Siegelschen Modulgruppe”, J. Reine Angew. Math., 362 (1985), 146–168 | MR | Zbl

[14] T. Ikeda, “On the lifting of elliptic cusp forms to Siegel cusp forms of degree $2n$”, Ann. of Math. (2), 154:3 (2001), 641–681 | DOI | MR | Zbl

[15] T. Ikeda, “Pullback of the lifting of elliptic cusp forms and Miyawaki's Conjecture”, Duke Math. J., 131:3 (2006), 469–497 | DOI | MR | Zbl

[16] K. Murakawa, “Relations between symmetric power $L$-functions and spinor $L$-functions attached to Ikeda lifts”, Kodai Math. J., 25:1 (2002), 61–71 | DOI | MR | Zbl

[17] H. Kawamura, Congruences for the Ikeda lifts of Hida's families mod 11, 19 and 23 19-{\allowbreak}23.pdf} http://www-fourier.ujf-grenoble.fr/~panchish/KawamuraCong11-{

[18] I. Miyawaki, “Numerical examples of Siegel cusp forms of degree 3 and their zeta-functions”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 46:2 (1992), 307–339 | DOI | MR | Zbl

[19] B. Heim, Towards Functoriality of Spinor $L$-Functions, Manuscript, MPIM, Bonn, 2008, 18 pp.

[20] H. Yoshida, “Siegel's modular forms and the arithmetic of quadratic forms”, Invent. Math., 60:3 (1980), 193–248 | DOI | MR | Zbl