Two Modularity Lifting Conjectures for Families of Siegel Modular Forms
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 565-574

Voir la notice de l'article provenant de la source Math-Net.Ru

For a prime $p$ and a positive integer $n$, using certain lifting procedures, we study some constructions of $p$-adic families of Siegel modular forms of genus $n$. Describing $L$-functions attached to Siegel modular forms and their analytic properties, we formulate two conjectures on the existence of the modularity liftings from $\operatorname{GSp}_{r}\times \operatorname{GSp}_{2m}$ to $\operatorname{GSp}_{r+2m}$ for some positive integers $r$ and $m$.
Keywords: $p$-adic families, Siegel modular forms, Hecke operators, Siegel–Eisenstein series, Ikeda–Miyawaki lift.
@article{MZM_2010_88_4_a7,
     author = {A. A. Panchishkin},
     title = {Two {Modularity} {Lifting} {Conjectures} for {Families} of {Siegel} {Modular} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {565--574},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/}
}
TY  - JOUR
AU  - A. A. Panchishkin
TI  - Two Modularity Lifting Conjectures for Families of Siegel Modular Forms
JO  - Matematičeskie zametki
PY  - 2010
SP  - 565
EP  - 574
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/
LA  - ru
ID  - MZM_2010_88_4_a7
ER  - 
%0 Journal Article
%A A. A. Panchishkin
%T Two Modularity Lifting Conjectures for Families of Siegel Modular Forms
%J Matematičeskie zametki
%D 2010
%P 565-574
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/
%G ru
%F MZM_2010_88_4_a7
A. A. Panchishkin. Two Modularity Lifting Conjectures for Families of Siegel Modular Forms. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 565-574. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a7/