On the Irrationality Exponent of the Number $\ln2$
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 549-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose another method of deriving the Marcovecchio estimate for the irrationality measure of the number $\ln2$ following, for the most part, the method of proof of the irrationality of the number $\zeta(3)$ proposed by the author in 1996. The proof uses single complex integrals, the so-called Meyer $G$-functions, and is much simpler than that of Marcovecchio.
Keywords: irrational number, Marcovecchio estimate, irrationality measure, irrationality exponent, Meyer $G$-function, saddle-point method.
@article{MZM_2010_88_4_a6,
     author = {Yu. V. Nesterenko},
     title = {On the {Irrationality} {Exponent} of the {Number} $\ln2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--564},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a6/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - On the Irrationality Exponent of the Number $\ln2$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 549
EP  - 564
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a6/
LA  - ru
ID  - MZM_2010_88_4_a6
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T On the Irrationality Exponent of the Number $\ln2$
%J Matematičeskie zametki
%D 2010
%P 549-564
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a6/
%G ru
%F MZM_2010_88_4_a6
Yu. V. Nesterenko. On the Irrationality Exponent of the Number $\ln2$. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 549-564. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a6/

[1] V. Kh. Salikhov, “O mere irratsionalnosti chisla $\pi$”, UMN, 63:3 (2008), 163–164 | MR | Zbl

[2] A. Baker, “Approximations to the logarithms of the certain rational numbers”, Acta Arithm., 10 (1964), 315–323 | MR | Zbl

[3] L. V. Danilov, “Ratsionalnye priblizheniya nekotorykh funktsii v ratsionalnykh tochkakh”, Matem. zametki, 24:4 (1978), 449–458 | MR | Zbl

[4] K. Alladi, M. Robinson, “On certain irrational values of the logarithm”, Number theory, Carbondale 1979, Lecture Notes in Math., 751, Springer-Verlad, Berlin, 1979, 1–9 | DOI | MR | Zbl

[5] G. V. Choodnovsky, “Approximations rationnelles des logarithmes de nombres rationnels”, C. R. Acad. Sci. Paris Sér. A-B, 288:12 (1979), 607–609 | MR | Zbl

[6] G. V. Chudnovsky, “Number theoretic applications of polynomials with rational coefficients defined by extremality conditions”, Arithmetic and Geometry, v. I, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983, 61–105 | MR | Zbl

[7] G. Rhin, “Approximants de Padé et mesures effectives d'irrationalité”, Séminaire de Théorie des Nombres, Paris 1985/86, Progr. Math., 71, Birkhäuser Boston, Boston, MA, 1987, 155–164 | MR | Zbl

[8] E. A. Rukhadze, “Otsenka snizu dlya priblizheniya $\ln2$ ratsionalnymi chislami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1987, no. 6, 25–29 | MR | Zbl

[9] M. Hata, “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407 (1990), 99–125 | MR | Zbl

[10] R. Marcovecchio, “The Rhin–Viola method for $\log2$”, Acta Arith., 139:2 (2009), 147–184 | DOI | MR | Zbl

[11] G. Rhin, C. Viola, “On a permutation group related to $\zeta(2)$”, Acta Arith., 77:1 (1996), 23–56 | MR | Zbl

[12] G. Rhin, C. Viola, “The group structure for $\zeta(3)$”, Acta Arith., 97:3 (2001), 269–293 | DOI | MR | Zbl

[13] Yu. V. Nesterenko, “Nekotorye zamechaniya o $\zeta(3)$”, Matem. zametki, 59:6 (1996), 865–880 | MR | Zbl

[14] Yu. Lyuk, Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980 | MR | Zbl

[15] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza. Ch. 2. Transtsendentnye funktsii, Fizmatgiz, M., 1963 | MR | Zbl

[16] M. Hata, “Rational approximations to $\pi$ and some other numbers”, Acta Arith., 63:4 (1993), 335–349 | MR | Zbl