Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_4_a14, author = {M. Jutila}, title = {The {Mellin} {Transform} of {Hardy's} {Function} is {Entire}}, journal = {Matemati\v{c}eskie zametki}, pages = {635--639}, publisher = {mathdoc}, volume = {88}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/} }
M. Jutila. The Mellin Transform of Hardy's Function is Entire. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 635-639. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/
[1] A. Ivić, “On the Mellin transforms of powers of Hardy's function”, Hardy-Ramanujan J., 33 (2010), 32–58; arXiv: math.NT/1001.1824
[2] M. Jutila, “The Mellin transform of the square of Riemann's zeta-function”, Period. Math. Hungar., 42:1-2 (2001), 179–190 | DOI | MR | Zbl
[3] M. Lukkarinen, “The Mellin transform of the square of Riemann's zeta-function and Atkinson's formula”, Dissertation, University of Turku, Ann. Acad. Sci. Fenn. Math. Diss., 140 (2005) | MR | Zbl
[4] A. Ivić, “The Mellin transform of the square of Riemann's zeta-function”, Int. J. Number Theory, 1:1 (2005), 65–73 | DOI | MR | Zbl
[5] Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Cambridge Tracts in Math., 127, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[6] A. Ivić, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, Wiley-Intersci. Publ., John Wiley Sons, New York, NY, 1985 | MR | Zbl