The Mellin Transform of Hardy's Function is Entire
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 635-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that an appropriately modified Mellin transform of the Hardy function $Z(x)$ is an entire function. The proof is based on the fact that the function $(2^{1-s}-1)\zeta(s)$ is entire.
Keywords: zeta function, Mellin transform, Hardy's function, holomorphic function, entire function, analytic continuation.
@article{MZM_2010_88_4_a14,
     author = {M. Jutila},
     title = {The {Mellin} {Transform} of {Hardy's} {Function} is {Entire}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {635--639},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/}
}
TY  - JOUR
AU  - M. Jutila
TI  - The Mellin Transform of Hardy's Function is Entire
JO  - Matematičeskie zametki
PY  - 2010
SP  - 635
EP  - 639
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/
LA  - ru
ID  - MZM_2010_88_4_a14
ER  - 
%0 Journal Article
%A M. Jutila
%T The Mellin Transform of Hardy's Function is Entire
%J Matematičeskie zametki
%D 2010
%P 635-639
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/
%G ru
%F MZM_2010_88_4_a14
M. Jutila. The Mellin Transform of Hardy's Function is Entire. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 635-639. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/

[1] A. Ivić, “On the Mellin transforms of powers of Hardy's function”, Hardy-Ramanujan J., 33 (2010), 32–58; arXiv: math.NT/1001.1824

[2] M. Jutila, “The Mellin transform of the square of Riemann's zeta-function”, Period. Math. Hungar., 42:1-2 (2001), 179–190 | DOI | MR | Zbl

[3] M. Lukkarinen, “The Mellin transform of the square of Riemann's zeta-function and Atkinson's formula”, Dissertation, University of Turku, Ann. Acad. Sci. Fenn. Math. Diss., 140 (2005) | MR | Zbl

[4] A. Ivić, “The Mellin transform of the square of Riemann's zeta-function”, Int. J. Number Theory, 1:1 (2005), 65–73 | DOI | MR | Zbl

[5] Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Cambridge Tracts in Math., 127, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[6] A. Ivić, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, Wiley-Intersci. Publ., John Wiley Sons, New York, NY, 1985 | MR | Zbl