The Mellin Transform of Hardy's Function is Entire
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 635-639
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that an appropriately modified Mellin transform of the Hardy function $Z(x)$ is an entire function. The proof is based on the fact that the function $(2^{1-s}-1)\zeta(s)$ is entire.
Keywords:
zeta function, Mellin transform, Hardy's function, holomorphic function, entire function, analytic continuation.
@article{MZM_2010_88_4_a14,
author = {M. Jutila},
title = {The {Mellin} {Transform} of {Hardy's} {Function} is {Entire}},
journal = {Matemati\v{c}eskie zametki},
pages = {635--639},
publisher = {mathdoc},
volume = {88},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/}
}
M. Jutila. The Mellin Transform of Hardy's Function is Entire. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 635-639. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a14/