Character Sums over Shifted Primes
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 605-619

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new bound for sums of a multiplicative character modulo an integer $q$ at shifted primes $p+a$ over primes $p\le N$. Our bound is nontrivial starting with $N\ge q^{8/9+\varepsilon}$ for any $\varepsilon>0$. This extends the range of the bound of Z. Kh. Rakhmonov that is nontrivial for $N\ge q^{1+\varepsilon}$.
Keywords: nonprincipal character, von Mangoldt function, primitive character, Euler function, sieve of Eratosthenes, Möbius function
Mots-clés : Legendre formula.
@article{MZM_2010_88_4_a11,
     author = {J. B. Friedlander and K. Gong and I. E. Shparlinski},
     title = {Character {Sums} over {Shifted} {Primes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {605--619},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a11/}
}
TY  - JOUR
AU  - J. B. Friedlander
AU  - K. Gong
AU  - I. E. Shparlinski
TI  - Character Sums over Shifted Primes
JO  - Matematičeskie zametki
PY  - 2010
SP  - 605
EP  - 619
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a11/
LA  - ru
ID  - MZM_2010_88_4_a11
ER  - 
%0 Journal Article
%A J. B. Friedlander
%A K. Gong
%A I. E. Shparlinski
%T Character Sums over Shifted Primes
%J Matematičeskie zametki
%D 2010
%P 605-619
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a11/
%G ru
%F MZM_2010_88_4_a11
J. B. Friedlander; K. Gong; I. E. Shparlinski. Character Sums over Shifted Primes. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 605-619. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a11/