Benford's Law and Distribution Functions of Sequences in $(0,1)$
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 485-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

Applying the theory of distribution functions of sequences $x_n\in[0,1]$, $n=1,2,\dots$, we find a functional equation for distribution functions of a sequence $x_n$ and show that the satisfaction of this functional equation for a sequence $x_n$ is equivalent to the fact that the sequence $x_n$ to satisfies the strong Benford law. Examples of distribution functions of sequences satisfying the functional equation are given with an application to the strong Benford law in different bases. Several direct consequences from uniform distribution theory are shown for the strong Benford law.
Keywords: distribution function of a sequence, Benford's law, density of occurrence of digits.
@article{MZM_2010_88_4_a0,
     author = {V. Bal\'a\v{z} and K. Nagasaka and O. Strauch},
     title = {Benford's {Law} and {Distribution} {Functions} of {Sequences} in $(0,1)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {485--501},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a0/}
}
TY  - JOUR
AU  - V. Baláž
AU  - K. Nagasaka
AU  - O. Strauch
TI  - Benford's Law and Distribution Functions of Sequences in $(0,1)$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 485
EP  - 501
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a0/
LA  - ru
ID  - MZM_2010_88_4_a0
ER  - 
%0 Journal Article
%A V. Baláž
%A K. Nagasaka
%A O. Strauch
%T Benford's Law and Distribution Functions of Sequences in $(0,1)$
%J Matematičeskie zametki
%D 2010
%P 485-501
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a0/
%G ru
%F MZM_2010_88_4_a0
V. Baláž; K. Nagasaka; O. Strauch. Benford's Law and Distribution Functions of Sequences in $(0,1)$. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 485-501. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a0/

[1] S. Newcomb, “Note on the frequency of use of the different digits in natural numbers”, Amer. J. Math., 4 (1881), 39–40 | DOI | MR | Zbl

[2] F. Benford, “The law of anomalous numbers”, Proc. Amer. Phil. Soc., 78 (1938), 551–572 | Zbl

[3] R. A. Raimi, “The first digit problem”, Amer. Math. Monthly, 83:7 (1976), 521–538 | DOI | MR | Zbl

[4] P. Diaconis, “The distribution of leading digits and uniform distribution mod 1”, Ann. Probab., 5:1 (1977), 72–81 | DOI | MR | Zbl

[5] S. Kunoff, “$N!$ has the first digit property”, Fibonacci Quart., 25:4 (1987), 365–367 | MR | Zbl

[6] P. Schatte, “On mantissa distribution in computing and Benford's law”, J. Inform. Process. Cybernet., 24:9 (1988), 443–455 | MR | Zbl

[7] K. Nagasaka, S. Kanemistu, J.-S. Shiue, “Benford's law: the logarithmic law of first digit”, Number Theory (Budapest, 1987), v. 1, Colloq. Math. Soc. János Bolyai, 51, Elementary and Analytic, North-Holland, Amsterdam, 1990, 361–391 | MR | Zbl

[8] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences., Pure Appl. Math., John Wiley Sons, New York, 1974 | MR | Zbl

[9] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math., 1651, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[10] O. Strauch, Š. Porubský, Distribution of Sequences: A Sampler, Schr. Slowak. Akad. Wiss., 1, Peter Lang, Frankfurt am Main, 2005 | MR | Zbl

[11] A. I. Pavlov, “O raspredelenii drobnykh dolei i zakone F. Benforda”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 760–774 | MR | Zbl

[12] P. Kostyrko, M. Mačaj, T. Šalát, O. Strauch, “On statistical limit points”, Proc. Amer. Math. Soc., 129:9 (2001), 2647–2654 | DOI | MR | Zbl

[13] G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Band 1, 2, Grundlehren Math. Wiss., 19, Springer-Verlag, Berlin, 1964 | MR

[14] A. R. Giuliano, O. Strauch, “On weighted distribution functions of sequences”, Unif. Distrib. Theory, 3:1 (2008), 1–18 | Zbl