A Note on Burgess's Estimate
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 355-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

By introducing the Rademacher–Menchov device, we prove “maximal” analogs of principal bounds of character sums. This allows us to present the Burgess method so as to separate the main idea of this method from the technical issues.
Keywords: Dirichlet character, generalized Riemann hypothesis, Rademacher–Menchov device, Hölder's inequality
Mots-clés : Legendre symbol.
@article{MZM_2010_88_3_a3,
     author = {P. X. Gallagher and H. L. Montgomery},
     title = {A {Note} on {Burgess's} {Estimate}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--364},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/}
}
TY  - JOUR
AU  - P. X. Gallagher
AU  - H. L. Montgomery
TI  - A Note on Burgess's Estimate
JO  - Matematičeskie zametki
PY  - 2010
SP  - 355
EP  - 364
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/
LA  - ru
ID  - MZM_2010_88_3_a3
ER  - 
%0 Journal Article
%A P. X. Gallagher
%A H. L. Montgomery
%T A Note on Burgess's Estimate
%J Matematičeskie zametki
%D 2010
%P 355-364
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/
%G ru
%F MZM_2010_88_3_a3
P. X. Gallagher; H. L. Montgomery. A Note on Burgess's Estimate. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/

[1] I. M. Vinogradov, “Sur la distribution des résidus et des nonrésidus des puissances”, Zhurnal fiz.-matem. ob-va pri Permskom un-te, 1 (1918), 94–98

[2] G. Pólya, “Über die Verteilung der quadratischen Reste und Nichtreste”, Gött. Nachr., 1918, 21–29 | Zbl

[3] I. Shur, “Ein ige Bemerkungen zu der vorsthenden Arbeit des Herrn G. Pólya: Über die Verteilung der quadratischen Reste und Nichtreste”, Gött. Nachr., 1918, 30–36

[4] R. E. A. C. Paley, “A theorem of characters”, J. London Math. Soc., 7:1 (1932), 28–32 | DOI | Zbl

[5] H. L. Montgomery, R. C. Vaughan, “Exponential sums with multiplicative coefficients”, Invent. Math., 43:1 (1977), 69–82 | DOI | MR | Zbl

[6] A. Granville, K. Soundararajan, “Large character sums: pretentious characters and the Pólya–Vinogradov theorem,”, J. Amer. Math. Soc., 20:2 (2007), 357–384 | DOI | MR | Zbl

[7] D. A. Burgess, “The distribution of quadratic residues and non-residues”, Mathematika, 4 (1957), 106–112 | DOI | MR | Zbl

[8] D. A. Burgess, “On character sums and primitive roots”, Proc. London Math. Soc. (3), 12:1 (1962), 179–192 | DOI | MR | Zbl

[9] D. A. Burgess, “On character sums and $L$-series”, Proc. London Math. Soc. (3), 12:1 (1962), 193–206 | DOI | MR | Zbl

[10] D. A. Burgess, “On character sums and $L$-series. II”, Proc. London Math. Soc. (3), 13:1 (1963), 524–536 | DOI | MR | Zbl

[11] J. Friedlander, “Primes in arithmetic progressions and related topics”, Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math., 70, Birkhäuser Boston, Boston, MA, 1987 | MR | Zbl

[12] A. A. Karatsuba, “Summy kharakterov i pervoobraznye korni v konechnykh polyakh”, Dokl. AN SSSR, 180:6 (1968), 1287–1289 | MR | Zbl

[13] A. A. Karatsuba, “Ob otsenkakh summ kharakterov”, Izv. AN SSSR. Ser. matem., 34:1 (1970), 20–30 | MR | Zbl

[14] H. L. Montgomery, R. C. Vaughan, “Mean values of character sums”, Canad. J. Math., 31:3 (1979), 476–487 | MR | Zbl

[15] J. Friedlander, H. Iwaniec, “Estimates for character sums”, Proc. Amer. Math. Soc., 119:2 (1993), 365–372 | DOI | MR | Zbl

[16] H. Davenport, P. Erdős, “The distribution of quadratic and higher residues”, Publ. Math. Debrecen, 2 (1952), 252–265 | MR

[17] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., 1041, Hermann et Cie., Paris, 1948 | MR | Zbl

[18] S. A. Stepanov, “O chisle tochek giperellipticheskoi krivoi nad prostym konechnym polem”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1171–1181 | MR | Zbl

[19] E. Bombieri, “Counting points on curves over finite fields (d'après S. A. Stepanov)”, Séminaire Bourbaki, 25ème année, Exp. No. 430, Lecture Notes in Math., 383, Springer-Verlag, Berlin, 1974, 234–241 | MR | Zbl

[20] W. M. Schmidt, “Zur Methode von Stepanov”, Acta Arith., 24 (1973), 347–367 | MR | Zbl

[21] W. M. Schmidt, Equations over Finite Fields. An Elementary Approach, Lecture Notes in Math., 536, Springer-Verlag, Berlin, 1976 | MR | Zbl

[22] H. Rademacher, “Einige Sätze über Reiheen von allgemeinen Orthogonalfunktionen”, Math. Ann., 87:1-2 (1922), 112–138 | DOI | MR

[23] D. Menchoff, “Sur les séries de fonctions orthogonales. (Premiére Partie. La convergence.)”, Fund. Math., 4 (1923), 82–105 | Zbl

[24] E. Landau, “Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen”, Gött. Nachr., 1918, 79–97 | Zbl

[25] G. Polia, G. Sege, Zadachi i teoremy iz analiza. Ch. 2: Teoriya funktsii. Raspredelenie nulei. Polinomy. Opredeliteli. Teoriya chisel, Nauka, M., 1978 | MR | Zbl