A Note on Burgess's Estimate
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 355-364

Voir la notice de l'article provenant de la source Math-Net.Ru

By introducing the Rademacher–Menchov device, we prove “maximal” analogs of principal bounds of character sums. This allows us to present the Burgess method so as to separate the main idea of this method from the technical issues.
Keywords: Dirichlet character, generalized Riemann hypothesis, Rademacher–Menchov device, Hölder's inequality
Mots-clés : Legendre symbol.
@article{MZM_2010_88_3_a3,
     author = {P. X. Gallagher and H. L. Montgomery},
     title = {A {Note} on {Burgess's} {Estimate}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--364},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/}
}
TY  - JOUR
AU  - P. X. Gallagher
AU  - H. L. Montgomery
TI  - A Note on Burgess's Estimate
JO  - Matematičeskie zametki
PY  - 2010
SP  - 355
EP  - 364
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/
LA  - ru
ID  - MZM_2010_88_3_a3
ER  - 
%0 Journal Article
%A P. X. Gallagher
%A H. L. Montgomery
%T A Note on Burgess's Estimate
%J Matematičeskie zametki
%D 2010
%P 355-364
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/
%G ru
%F MZM_2010_88_3_a3
P. X. Gallagher; H. L. Montgomery. A Note on Burgess's Estimate. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a3/