Enlarged Major Arcs in Additive Problems
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 438-445
Cet article a éte moissonné depuis la source Math-Net.Ru
Enlarged major arcs in the Waring–Goldbach problem are studied by using large sieve estimates for Dirichlet polynomials and estimates for exponential sums over primes.
Keywords:
Waring–Goldbach problem, major and minor arcs on the unit interval, Farey dissection, Dirichlet character.
@article{MZM_2010_88_3_a11,
author = {J. Liu},
title = {Enlarged {Major} {Arcs} in {Additive} {Problems}},
journal = {Matemati\v{c}eskie zametki},
pages = {438--445},
year = {2010},
volume = {88},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a11/}
}
J. Liu. Enlarged Major Arcs in Additive Problems. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 438-445. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a11/
[1] A. V. Kumchev, “On Weyl sums over primes and almost primes”, Michigan Math. J., 54:2 (2006), 243–268 | DOI | MR | Zbl
[2] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1981 | MR | Zbl
[3] L.-k. Hua, Tui Lei Su Shu Lun [Additive Prime Number Theory], Science press, Peking, 1957 | MR
[4] X. Ren, “On exponential sums over primes and application in Waring–Goldbach problem”, Sci. China Ser. A, 48:6 (2005), 785–797 | DOI | MR | Zbl
[5] J. Liu, “On Lagrange's theorem with prime variables”, Quart. J. Math. Oxford Ser. (2), 54:4 (2003), 453–462 | DOI | MR | Zbl
[6] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | Zbl