On the Joint Universality of Lerch Zeta Functions
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 428-437.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a Voronin-type joint universality theorem for Lerch zeta functions is obtained under weaker assumptions than those in [1].
Keywords: Lerch zeta functions, joint universality theorem, Voronin-type theorem, analytic function, Hurwitz zeta function, Dirichlet character, probability measure.
Mots-clés : simple pole
@article{MZM_2010_88_3_a10,
     author = {A. Laurincikas},
     title = {On the {Joint} {Universality} of {Lerch} {Zeta} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {428--437},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a10/}
}
TY  - JOUR
AU  - A. Laurincikas
TI  - On the Joint Universality of Lerch Zeta Functions
JO  - Matematičeskie zametki
PY  - 2010
SP  - 428
EP  - 437
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a10/
LA  - ru
ID  - MZM_2010_88_3_a10
ER  - 
%0 Journal Article
%A A. Laurincikas
%T On the Joint Universality of Lerch Zeta Functions
%J Matematičeskie zametki
%D 2010
%P 428-437
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a10/
%G ru
%F MZM_2010_88_3_a10
A. Laurincikas. On the Joint Universality of Lerch Zeta Functions. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 428-437. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a10/

[1] A. Laurinčikas, K. Matsumoto, “Joint value distribution theorems on Lerch zeta-functions. III”, Analytic and Probabilistic Methods in Number Theory, TEV, Vilnius, 2007, 87–98 | MR | Zbl

[2] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002 | MR | Zbl

[3] S. M. Voronin, “Teorema o raspredelenii znachenii dzeta-funktsii Rimana”, Dokl. AN SSSR, 221:44 (1975), 771 | MR | Zbl

[4] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[5] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | Zbl

[6] S. M. Voronin, Izbrannye trudy. Matematika, ed. A. A. Karatsuba, Izd-vo MGTU im. N. E. Baumana, M., 2006

[7] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[8] J. Steuding, Value-Distribution of $L$-Functions, Lectures Notes in Math, 1877, Springer-Verlag, Berlin, 2007 | MR | Zbl

[9] A. Laurinčikas, “The universality of zeta-functions”, Acta Appl. Math., 78:1-3 (2003), 251–271 | MR | Zbl

[10] K. Matsumoto, “Probabilistic value-distribution theory of zeta-functions”, Sugaku Expositions, 17:1 (2004), 51–71 | MR | Zbl

[11] A. Laurinčikas, “Application of probabilistic methods in the theory of Riemann zeta-function”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova. Aktualnye problemy, Ch. 2 (Tula, 10–15 sentyabrya 2001 g.), Izd-vo Mekh.-mat. fak-ta MGU, M., 2002, 98–116 | MR | Zbl

[12] A. Laurinchikas, “Universalnost dzeta-funktsii Lerkha”, Litovskii matem. sb., 37:3 (1997), 367–375 | MR | Zbl

[13] A. Laurinchikas, “O dzeta-funktsii Lerkha s ratsionalnymi parametrami”, Litovskii matem. sb., 38:1 (1998), 113–124 | MR | Zbl

[14] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27:2 (1975), 493–503 | MR | Zbl

[15] A. Laurinčikas, K. Matsumoto, “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl

[16] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 58–75 | MR | Zbl

[17] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl

[18] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 20, Amer. Math. Soc., Providence, RI, 1960 | MR | Zbl