Criteria for Unitary Congruence of Complex $2\times 2$ Matrices
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 249-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

Canonical forms of $2\times 2$ matrices with respect to unitary congruence transformations are described. This makes it possible to formulate simple criteria for checking whether the given matrices are unitarily congruent.
Keywords: unitary similarity transformation, unitary congruence transformation, Specht's criterion, singular value, cosquare, Jordan block.
@article{MZM_2010_88_2_a7,
     author = {Kh. D. Ikramov},
     title = {Criteria for {Unitary} {Congruence} of {Complex} $2\times 2$ {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--260},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Criteria for Unitary Congruence of Complex $2\times 2$ Matrices
JO  - Matematičeskie zametki
PY  - 2010
SP  - 249
EP  - 260
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a7/
LA  - ru
ID  - MZM_2010_88_2_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Criteria for Unitary Congruence of Complex $2\times 2$ Matrices
%J Matematičeskie zametki
%D 2010
%P 249-260
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a7/
%G ru
%F MZM_2010_88_2_a7
Kh. D. Ikramov. Criteria for Unitary Congruence of Complex $2\times 2$ Matrices. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 249-260. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a7/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl

[2] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl

[3] Y. Hong, R. A. Horn, “A characterization of unitary congruence”, Linear and Multilinear Algebra, 25:2 (1989), 105–119 | DOI | MR | Zbl

[4] Kh. D. Ikramov, “O matrichnom uravnenii $X\overline X=A$”, Dokl. RAN, 424:3 (2009), 304–307 | MR