Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schr\"odinger Operator with Complex Potential
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 229-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the asymptotics of the spectrum of the operator $$ \widehat H\biggl(x,-\imath h\frac{\partial}{\partial x}\biggr)=-h^2\frac{\partial^2}{\partial x^2}+\imath(\cos x+\cos2x) $$ as $h\to0$ and show that the spectrum concentrates near some graph on the complex plane. We obtain equations for the eigenvalues, which are conditions on the periods of a holomorphic form on the corresponding Riemannian surface.
Keywords: Schrödinger operator, semiclassical spectrum of an operator, Riemannian surface, holomorphic form, Stokes line, turning point.
Mots-clés : quantization condition, monodromy matrix
@article{MZM_2010_88_2_a6,
     author = {A. I. Esina and A. I. Shafarevich},
     title = {Quantization {Conditions} on {Riemannian} {Surfaces} and the {Semiclassical} {Spectrum} of the {Schr\"odinger} {Operator} with {Complex} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {229--248},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a6/}
}
TY  - JOUR
AU  - A. I. Esina
AU  - A. I. Shafarevich
TI  - Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schr\"odinger Operator with Complex Potential
JO  - Matematičeskie zametki
PY  - 2010
SP  - 229
EP  - 248
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a6/
LA  - ru
ID  - MZM_2010_88_2_a6
ER  - 
%0 Journal Article
%A A. I. Esina
%A A. I. Shafarevich
%T Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schr\"odinger Operator with Complex Potential
%J Matematičeskie zametki
%D 2010
%P 229-248
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a6/
%G ru
%F MZM_2010_88_2_a6
A. I. Esina; A. I. Shafarevich. Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schr\"odinger Operator with Complex Potential. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 229-248. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a6/

[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[2] E. B. Davies, “Pseudospectra of differential operators”, J. Operator Theory, 43:2 (2000), 243–262 | MR | Zbl

[3] P. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[4] Ya. B. Zeldovich, A. A. Ruzmaikin, “Gidromagnitnoe dinamo kak istochnik planetarnogo, solnechnogo i galakticheskogo magnetizma”, UFN, 152:2 (1987), 263–284

[5] S. A. Stepin, A. A. Arzhanov, “Kvaziklassicheskie spektralnye asimptotiki i yavlenie Stoksa dlya uravneniya Vebera”, Dokl. RAN, 378:1 (2001), 18–21 | MR | Zbl

[6] S. V. Galtsev, A. I. Shafarevich, “Spektr i psevdospektr nesamosopryazhennogo operatora Shrëdingera s periodicheskimi koeffitsientami”, Matem. zametki, 80:3 (2006), 356–366 | MR | Zbl

[7] S. V. Galtsev, A. I. Shafarevich, “Kvantovannye rimanovy poverkhnosti i kvaziklassicheskie spektralnye serii dlya nesamosopryazhennogo operatora Shredingera s periodicheskimi koeffitsientami”, TMF, 148:2 (2006), 206–226 | MR | Zbl

[8] A. V. Dyachenko, A. A. Shkalikov, “O modelnoi zadache dlya uravneniya Orra–Zommerfelda s lineinym profilem”, Funkts. analiz i ego pril., 36:3 (2002), 71–75 | MR | Zbl

[9] S. A. Stepin, “Nesamosopryazhennye singulyarnye vozmuscheniya: model perekhoda ot diskretnogo spektra k nepreryvnomu”, UMN, 50:6 (1995), 219–220 | MR | Zbl

[10] S. A. Stepin, V. A. Titov, “O vozmuschenii kratnogo sobstvennogo znacheniya”, UMN, 60:1 (2005), 155–156 | MR | Zbl

[11] S. N. Tumanov, A. A. Shkalikov, “O predelnom povedenii spektra modelnoi zadachi dlya uravneniya Orra–Zommerfelda s profilem Puazeilya”, Izv. RAN. Ser. matem., 66:4 (2002), 177–204 | MR | Zbl

[12] A. A. Shkalikov, “O predelnom povedenii spektra pri bolshikh znacheniyakh parametra odnoi modelnoi zadachi”, Matem. zametki, 62:6 (1997), 950–953 | MR | Zbl

[13] L. N. Trefethen, “Pseudospectra of linear operators”, ISIAM 95, Proceedings of the Third international congress on industrial and applied mathematics (Hamburg, 1995), Math. Res., 87, Akademie Verlag, Berlin, 1996, 401–434 | MR | Zbl

[14] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[15] M. A. Evgrafov, M. V. Fedoryuk, “Asimptotika reshenii uravneniya $w''(z)-p(z,\lambda)w(z)=0$ pri $\lambda\to\infty$ v kompleksnoi plotnosti $z$”, UMN, 21:1 (1966), 3–50 | MR | Zbl