Mots-clés : Cesàro means
@article{MZM_2010_88_2_a5,
author = {A. M. D'yachenko},
title = {Rate of {Pointwise} {Approximation} of {Functions} by the {Ces\`aro} $(C,\beta)${-Means} of {Their} {Fourier} {Series}},
journal = {Matemati\v{c}eskie zametki},
pages = {217--228},
year = {2010},
volume = {88},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a5/}
}
A. M. D'yachenko. Rate of Pointwise Approximation of Functions by the Cesàro $(C,\beta)$-Means of Their Fourier Series. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a5/
[1] A. Zigmund, Trigonometricheskie ryady, v. 1, Mir, 1965 | MR | Zbl
[2] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[3] J. G. Herriot, “Nörlund summability of double Fourier series”, Trans. Amer. Math. Soc., 52:1 (1942), 72–94 | DOI | MR | Zbl
[4] V. A. Ilin, “Usloviya lokalizatsii pryamougolnykh chastichnykh summ kratnogo trigonometricheskogo ryada Fure v klassakh S. M. Nikolskogo”, Matem. zametki, 8:5 (1970), 595–606 | MR | Zbl
[5] N. Ch. Krutitskaya, “Lokalizatsiya pri ogranichennom summirovanii metodami Chezaro, Rissa i Abelya kratnykh ryadov Fure”, Matem. zametki, 12:3 (1972), 355–364 | MR | Zbl
[6] N. Ch. Krutitskaya, “Okonchatelnye usloviya lokalizatsii pryamougolnykh chezarovskikh srednikh i srednikh metoda Abelya pri ogranichennom summirovanii kratnogo trigonometricheskogo ryada Fure v klassakh Liuvillya”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 593–602 | MR | Zbl
[7] A. M. Dyachenko, “O svoistvakh srednikh Chezaro dvoinykh ryadov Fure”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2010, no. 2, 3–11