Weighted Monotonicity Inequalities for Traces on Operator Algebras
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 193-200
Voir la notice de l'article provenant de la source Math-Net.Ru
We study inequalities of the form
$$
\tau(w(A)^{1/2}f(A)w(A)^{1/2})\le\tau(w(A)^{1/2}f(B)w(A)^{1/2}),\qquad A\le B,
$$
where $\tau$ is a trace on a von Neumann algebra or a $C^*$-algebra, $A$ and $B$ are self-adjoint elements of the algebra in question, $f$ and $w$ are real-valued functions, and the “weight” function $w$ is nonnegative.
Keywords:
von Neumann algebra, $C^*$-algebra, trace, monotonicity, Hermitian matrix, weight function, self-adjoint element, tracial functional, Borel function.
@article{MZM_2010_88_2_a3,
author = {Dinh Trung Hoa and O. E. Tikhonov},
title = {Weighted {Monotonicity} {Inequalities} for {Traces} on {Operator} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {193--200},
publisher = {mathdoc},
volume = {88},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/}
}
Dinh Trung Hoa; O. E. Tikhonov. Weighted Monotonicity Inequalities for Traces on Operator Algebras. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 193-200. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/