Weighted Monotonicity Inequalities for Traces on Operator Algebras
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 193-200

Voir la notice de l'article provenant de la source Math-Net.Ru

We study inequalities of the form $$ \tau(w(A)^{1/2}f(A)w(A)^{1/2})\le\tau(w(A)^{1/2}f(B)w(A)^{1/2}),\qquad A\le B, $$ where $\tau$ is a trace on a von Neumann algebra or a $C^*$-algebra, $A$ and $B$ are self-adjoint elements of the algebra in question, $f$ and $w$ are real-valued functions, and the “weight” function $w$ is nonnegative.
Keywords: von Neumann algebra, $C^*$-algebra, trace, monotonicity, Hermitian matrix, weight function, self-adjoint element, tracial functional, Borel function.
@article{MZM_2010_88_2_a3,
     author = {Dinh Trung Hoa and O. E. Tikhonov},
     title = {Weighted {Monotonicity} {Inequalities} for {Traces} on {Operator} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/}
}
TY  - JOUR
AU  - Dinh Trung Hoa
AU  - O. E. Tikhonov
TI  - Weighted Monotonicity Inequalities for Traces on Operator Algebras
JO  - Matematičeskie zametki
PY  - 2010
SP  - 193
EP  - 200
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/
LA  - ru
ID  - MZM_2010_88_2_a3
ER  - 
%0 Journal Article
%A Dinh Trung Hoa
%A O. E. Tikhonov
%T Weighted Monotonicity Inequalities for Traces on Operator Algebras
%J Matematičeskie zametki
%D 2010
%P 193-200
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/
%G ru
%F MZM_2010_88_2_a3
Dinh Trung Hoa; O. E. Tikhonov. Weighted Monotonicity Inequalities for Traces on Operator Algebras. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 193-200. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/