Weighted Monotonicity Inequalities for Traces on Operator Algebras
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 193-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study inequalities of the form $$ \tau(w(A)^{1/2}f(A)w(A)^{1/2})\le\tau(w(A)^{1/2}f(B)w(A)^{1/2}),\qquad A\le B, $$ where $\tau$ is a trace on a von Neumann algebra or a $C^*$-algebra, $A$ and $B$ are self-adjoint elements of the algebra in question, $f$ and $w$ are real-valued functions, and the “weight” function $w$ is nonnegative.
Keywords: von Neumann algebra, $C^*$-algebra, trace, monotonicity, Hermitian matrix, weight function, self-adjoint element, tracial functional, Borel function.
@article{MZM_2010_88_2_a3,
     author = {Dinh Trung Hoa and O. E. Tikhonov},
     title = {Weighted {Monotonicity} {Inequalities} for {Traces} on {Operator} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/}
}
TY  - JOUR
AU  - Dinh Trung Hoa
AU  - O. E. Tikhonov
TI  - Weighted Monotonicity Inequalities for Traces on Operator Algebras
JO  - Matematičeskie zametki
PY  - 2010
SP  - 193
EP  - 200
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/
LA  - ru
ID  - MZM_2010_88_2_a3
ER  - 
%0 Journal Article
%A Dinh Trung Hoa
%A O. E. Tikhonov
%T Weighted Monotonicity Inequalities for Traces on Operator Algebras
%J Matematičeskie zametki
%D 2010
%P 193-200
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/
%G ru
%F MZM_2010_88_2_a3
Dinh Trung Hoa; O. E. Tikhonov. Weighted Monotonicity Inequalities for Traces on Operator Algebras. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 193-200. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a3/

[1] Dinh Trung Hoa, O. E. Tikhonov, “Weighted trace inequalities of monotonicity”, Lobachevskii J. Math., 26 (2007), 63–67 | MR | Zbl

[2] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR | Zbl

[3] M. Takesaki, Theory of Operator Algebras, v. I, Springer-Verlag, New York, NY, 1979 | MR | Zbl

[4] L. T. Gardner, “An inequality characterizes the trace”, Canad. J. Math., 31:6 (1979), 1322–1328 | MR | Zbl

[5] D. Petz, J. Zemánek, “Characterizations of the trace”, Linear Algebra Appl., 111 (1988), 43–52 | DOI | MR | Zbl

[6] A. I. Stolyarov, O. E. Tikhonov, A. N. Sherstnev, “Kharakterizatsiya normalnykh sledov na algebrakh fon Neimana neravenstvami dlya modulya”, Matem. zametki, 72:3 (2002), 448–454 | MR | Zbl

[7] O. E. Tikhonov, “Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals”, Positivity, 9:2 (2005), 259–264 | DOI | MR | Zbl

[8] M. Takesaki, Theory of Operator Algebras, Operator Algebras and Non-Commutative Geometry, 6, v. II, Encyclopaedia Math. Sci., 125, Springer-Verlag, New York, 2003 | MR | Zbl

[9] O. E. Tikhonov, “Vypuklye funktsii i neravenstva dlya sleda”, Konstruktivnaya teoriya funktsii i funktsionalnyi analiz, 6, KGU, Kazan, 1987, 77–82 | MR | Zbl

[10] L. G. Brown, H. Kosaki, “Jensen's inequality in semi-finite von Neumann algebras”, J. Operator Theory, 23:1 (1990), 3–19 | MR | Zbl

[11] O. E. Tikhonov, “Trace inequalities for spaces in spectral duality”, Studia Math., 104:1 (1993), 99–110 | MR | Zbl

[12] A. M. Bikchentaev, O. E. Tikhonov, “Characterization of the trace by monotonicity inequalities”, Linear Algebra Appl., 422:1 (2007), 274–278 | DOI | MR | Zbl

[13] T. Sano, T. Yatsu, “Characterizations of tracial property via inequalities”, JIPAM. J. Inequal. Pure Appl. Math., 7:1 (2006), Article No. 36 | MR | Zbl

[14] T. Ogasawara, “A theorem on operator algebras”, J. Sci. Hiroshima Univ. Ser. A, 18 (1955), 307–309 | MR | Zbl

[15] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, v. II, Pure Appl. Math., 100, Advanced Theory, Academic Press, Orlando, Fl, 1986 | MR | Zbl