Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 288-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a functional operator equation in Lebesgue space, we prove a statement on the pointwise estimate of the modulus of the increment of its global (on a fixed set $\Pi\subset\mathbb R^n$) solution under the variation of the control function appearing in this equation. As an auxiliary statement, we prove a generalization of Gronwall's lemma to the case of a nonlinear operator acting in Lebesgue space. The approach used here is based on methods from the theory of stability of existence of global solutions to Volterra operator equations.
Keywords: functional operator equation, control function, initial boundary-value problem, Gronwall's lemma, Volterra operator equation
Mots-clés : Lebesgue space, increment of a solution.
@article{MZM_2010_88_2_a10,
     author = {A. V. Chernov},
     title = {Pointwise {Estimation} of the {Difference} of the {Solutions} of a {Controlled} {Functional} {Operator} {Equation} in {Lebesgue} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {288--302},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a10/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces
JO  - Matematičeskie zametki
PY  - 2010
SP  - 288
EP  - 302
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a10/
LA  - ru
ID  - MZM_2010_88_2_a10
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces
%J Matematičeskie zametki
%D 2010
%P 288-302
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a10/
%G ru
%F MZM_2010_88_2_a10
A. V. Chernov. Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 288-302. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a10/

[1] V. I. Sumin, A. V. Chernov, “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestn. Nizhegorodsk. gos. un-ta im. N. I. Lobachevskogo. Ser. matem. model. i optim. upr., 26:1 (2003), 39–49

[2] N. V. Azbelev, “O granitsakh primenimosti teoremy Chaplygina o differentsialnykh neravenstvakh”, Matem. sb., 39:2 (1956), 161–178 | MR | Zbl

[3] N. V. Azbelev, Z. B. Tsalyuk, “Ob integralnykh neravenstvakh. I”, Matem. sb., 56:3 (1962), 325–342 | MR | Zbl

[4] E. S. Zhukovskii, “Neravenstva Volterra v funktsionalnykh prostranstvakh”, Matem. sb., 195:9 (2004), 3–18 | MR | Zbl

[5] N. S. Kurpel, B. A. Shuvar, Dvustoronnie operatornye neravenstva i ikh primenenie, Naukova dumka, Kiev, 1980 | MR | Zbl

[6] V. I. Sumin, “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, Dokl. AN SSSR, 305:5 (1989), 1056–1059 | MR | Zbl

[7] V. I. Sumin, “O funktsionalnykh volterrovykh uravneniyakh”, Izv. vuzov. Matem., 1995, no. 9, 67–77 | MR | Zbl

[8] V. I. Sumin, “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestn. Nizhegorodsk. gos. un-ta im. N. I. Lobachevskogo. Ser. matem. model. i optim. upr., 19:2 (1998), 138–151

[9] V. I. Sumin, A. V. Chernov, “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[10] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[11] B. Sh. Mordukhovich, Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[12] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[13] Zh.-L. Lions, Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR | Zbl

[14] Kh. Tribel, Teorii interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[15] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2000 | Zbl