On New Resonances and Normal Forms of Autonomous Systems with One Zero Eigenvalue
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, in a neighborhood of a singular point, we consider autonomous systems of ordinary differential equations such that the matrix of their linear part has one zero eigenvalue, while the other eigenvalues lie outside the imaginary axis. We study the reducibility of such systems to polynomial normal form.
Keywords: autonomous system, ordinary differential equations, singular point, zero eigenvalue, Taylor series, resonance
Mots-clés : polynomial normal form.
@article{MZM_2010_88_1_a5,
     author = {V. S. Samovol},
     title = {On {New} {Resonances} and {Normal} {Forms} of {Autonomous} {Systems} with {One} {Zero} {Eigenvalue}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a5/}
}
TY  - JOUR
AU  - V. S. Samovol
TI  - On New Resonances and Normal Forms of Autonomous Systems with One Zero Eigenvalue
JO  - Matematičeskie zametki
PY  - 2010
SP  - 63
EP  - 77
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a5/
LA  - ru
ID  - MZM_2010_88_1_a5
ER  - 
%0 Journal Article
%A V. S. Samovol
%T On New Resonances and Normal Forms of Autonomous Systems with One Zero Eigenvalue
%J Matematičeskie zametki
%D 2010
%P 63-77
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a5/
%G ru
%F MZM_2010_88_1_a5
V. S. Samovol. On New Resonances and Normal Forms of Autonomous Systems with One Zero Eigenvalue. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a5/

[1] V. S. Samovol, “Normalnaya forma avtonomnoi sistemy s odnim nulevym kornem”, Matem. zametki, 75:5 (2004), 711–720 | MR | Zbl

[2] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | Zbl

[3] V. S. Samovol, “Ekvivalentnost sistem differentsialnykh uravnenii v okrestnosti osoboi tochki”, Tr. MMO, 44, Izd-vo Mosk. un-ta, M., 1982, 213–234 | MR | Zbl

[4] A. N. Kuznetsov, “Differentsiruemye resheniya vyrozhdayuschikhsya sistem obyknovennykh uravnenii”, Funkts. analiz i ego pril., 6:2 (1972), 41–51 | MR | Zbl

[5] G. R. Belitskii, “Gladkaya ekvivalentnost rostkov vektornykh polei s odnim nulevym ili paroi chisto mnimykh sobstvennykh znachenii”, Funkts. analiz i ego pril., 20:4 (1986), 1–8 | MR | Zbl

[6] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[7] Yu. N. Bibikov, “O privodimosti sistemy dvukh differentsialnykh uravnenii k normalnoi forme”, Differents. uravneniya, 7:10 (1971), 1899–1902 | MR | Zbl

[8] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968 | MR | Zbl