On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 18-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

All quasigreedy subsystems of the Haar system in $L^1(0,1)$ are described. The problem of renormalizing the Haar system so that it becomes a quasigreedy basis is also studied.
Keywords: greedy algorithm in $L^1(0,1)$, Haar system, $\omega$-quasigreedy basis, quasigreedy Haar subsystem, Banach space.
@article{MZM_2010_88_1_a1,
     author = {S. L. Gogyan},
     title = {On a {Greedy} {Algorithm} in~$L^1(0,1)$ with {Regard} to {Subsystems} of the {Haar} {System} and on $\omega${-Quasigreedy} {Bases}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/}
}
TY  - JOUR
AU  - S. L. Gogyan
TI  - On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases
JO  - Matematičeskie zametki
PY  - 2010
SP  - 18
EP  - 29
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/
LA  - ru
ID  - MZM_2010_88_1_a1
ER  - 
%0 Journal Article
%A S. L. Gogyan
%T On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases
%J Matematičeskie zametki
%D 2010
%P 18-29
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/
%G ru
%F MZM_2010_88_1_a1
S. L. Gogyan. On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/

[1] S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl

[2] P. Wojtaszczyk, “Greedy algorithm for general biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314 | DOI | MR | Zbl

[3] V. N. Temlyakov, “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8:3 (1998), 249–265 | DOI | MR | Zbl

[4] S. V. Konyagin, V. N. Temlyakov, “Greedy approximation with regard to bases and general minimal systems”, Serdica Math. J., 28:4 (2002), 305–328 | MR | Zbl

[5] S. V. Konyagin, V. N. Temlyakov, “Convergence of greedy approximation. I. General systems”, Studia Math., 159, no. 1, 2003, 143–160 | MR | Zbl

[6] S. J. Dilworth, D. Kutzarova, P. Wojtaszczyk, “On approximate $l_1$ systems in Banach spaces”, J. Approx. Theory, 114, no. 2, 2002, 214–241 | MR | Zbl

[7] S. Gogyan, “Greedy algorithm with regard to Haar subsystems”, East J. Approx., 11:2 (2005), 221–236 | MR | Zbl

[8] S. Gogyan, “On convergence of weak thresholding greedy algorithm in $L^1(0,1)$”, J. Approx. Theory, 161:1 (2009), 49–64 | DOI | MR | Zbl