Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_1_a1, author = {S. L. Gogyan}, title = {On a {Greedy} {Algorithm} in~$L^1(0,1)$ with {Regard} to {Subsystems} of the {Haar} {System} and on $\omega${-Quasigreedy} {Bases}}, journal = {Matemati\v{c}eskie zametki}, pages = {18--29}, publisher = {mathdoc}, volume = {88}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/} }
TY - JOUR AU - S. L. Gogyan TI - On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases JO - Matematičeskie zametki PY - 2010 SP - 18 EP - 29 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/ LA - ru ID - MZM_2010_88_1_a1 ER -
S. L. Gogyan. On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/
[1] S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl
[2] P. Wojtaszczyk, “Greedy algorithm for general biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314 | DOI | MR | Zbl
[3] V. N. Temlyakov, “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8:3 (1998), 249–265 | DOI | MR | Zbl
[4] S. V. Konyagin, V. N. Temlyakov, “Greedy approximation with regard to bases and general minimal systems”, Serdica Math. J., 28:4 (2002), 305–328 | MR | Zbl
[5] S. V. Konyagin, V. N. Temlyakov, “Convergence of greedy approximation. I. General systems”, Studia Math., 159, no. 1, 2003, 143–160 | MR | Zbl
[6] S. J. Dilworth, D. Kutzarova, P. Wojtaszczyk, “On approximate $l_1$ systems in Banach spaces”, J. Approx. Theory, 114, no. 2, 2002, 214–241 | MR | Zbl
[7] S. Gogyan, “Greedy algorithm with regard to Haar subsystems”, East J. Approx., 11:2 (2005), 221–236 | MR | Zbl
[8] S. Gogyan, “On convergence of weak thresholding greedy algorithm in $L^1(0,1)$”, J. Approx. Theory, 161:1 (2009), 49–64 | DOI | MR | Zbl