On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 18-29
Voir la notice de l'article provenant de la source Math-Net.Ru
All quasigreedy subsystems of the Haar system in $L^1(0,1)$ are described. The problem of renormalizing the Haar system so that it becomes a quasigreedy basis is also studied.
Keywords:
greedy algorithm in $L^1(0,1)$, Haar system, $\omega$-quasigreedy basis, quasigreedy Haar subsystem, Banach space.
@article{MZM_2010_88_1_a1,
author = {S. L. Gogyan},
title = {On a {Greedy} {Algorithm} in~$L^1(0,1)$ with {Regard} to {Subsystems} of the {Haar} {System} and on $\omega${-Quasigreedy} {Bases}},
journal = {Matemati\v{c}eskie zametki},
pages = {18--29},
publisher = {mathdoc},
volume = {88},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/}
}
TY - JOUR AU - S. L. Gogyan TI - On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases JO - Matematičeskie zametki PY - 2010 SP - 18 EP - 29 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/ LA - ru ID - MZM_2010_88_1_a1 ER -
S. L. Gogyan. On a Greedy Algorithm in~$L^1(0,1)$ with Regard to Subsystems of the Haar System and on $\omega$-Quasigreedy Bases. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a1/