Unique Solvability of an Analog of the Tricomi Problem with Nonlocal Integral Conjugation Condition
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 867-876

Voir la notice de l'article provenant de la source Math-Net.Ru

Using an alternating method of Schwartz type, we prove the unique solvability of the elliptic-hyperbolic equation in the class of generalized solutions of an analog of the Tricomi problem with nonlocal integral conjugation condition for the case of an arbitrary approach of the elliptic boundary of the domain to the line of type change with the exception of the case of tangency.
Keywords: elliptic-hyperbolic equation, Tricomi problem, alternating method of Schwartz type, Riemann function, maximum principle.
Mots-clés : Goursat problem
@article{MZM_2010_87_6_a7,
     author = {E. R. Mansurova},
     title = {Unique {Solvability} of an {Analog} of the {Tricomi} {Problem} with {Nonlocal} {Integral} {Conjugation} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {867--876},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a7/}
}
TY  - JOUR
AU  - E. R. Mansurova
TI  - Unique Solvability of an Analog of the Tricomi Problem with Nonlocal Integral Conjugation Condition
JO  - Matematičeskie zametki
PY  - 2010
SP  - 867
EP  - 876
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a7/
LA  - ru
ID  - MZM_2010_87_6_a7
ER  - 
%0 Journal Article
%A E. R. Mansurova
%T Unique Solvability of an Analog of the Tricomi Problem with Nonlocal Integral Conjugation Condition
%J Matematičeskie zametki
%D 2010
%P 867-876
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a7/
%G ru
%F MZM_2010_87_6_a7
E. R. Mansurova. Unique Solvability of an Analog of the Tricomi Problem with Nonlocal Integral Conjugation Condition. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 867-876. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a7/