Unique Solvability of an Analog of the Tricomi Problem with Nonlocal Integral Conjugation Condition
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 867-876
Voir la notice de l'article provenant de la source Math-Net.Ru
Using an alternating method of Schwartz type, we prove the unique solvability of the elliptic-hyperbolic equation in the class of generalized solutions of an analog of the Tricomi problem with nonlocal integral conjugation condition for the case of an arbitrary approach of the elliptic boundary of the domain to the line of type change with the exception of the case of tangency.
Keywords:
elliptic-hyperbolic equation, Tricomi problem, alternating method of Schwartz type, Riemann function, maximum principle.
Mots-clés : Goursat problem
Mots-clés : Goursat problem
@article{MZM_2010_87_6_a7,
author = {E. R. Mansurova},
title = {Unique {Solvability} of an {Analog} of the {Tricomi} {Problem} with {Nonlocal} {Integral} {Conjugation} {Condition}},
journal = {Matemati\v{c}eskie zametki},
pages = {867--876},
publisher = {mathdoc},
volume = {87},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a7/}
}
TY - JOUR AU - E. R. Mansurova TI - Unique Solvability of an Analog of the Tricomi Problem with Nonlocal Integral Conjugation Condition JO - Matematičeskie zametki PY - 2010 SP - 867 EP - 876 VL - 87 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a7/ LA - ru ID - MZM_2010_87_6_a7 ER -
E. R. Mansurova. Unique Solvability of an Analog of the Tricomi Problem with Nonlocal Integral Conjugation Condition. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 867-876. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a7/