Bipolygons and Multipolygons over Semigroups
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 855-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, bipolygons (polygons over two semigroups) and multipolygons (polygons over several semigroups) for some classes of semigroups are studied. A complete description of bipolygons over two arbitrary groups is obtained. The structure of unitary multipolygons over a family of monoids (i.e., multipolygons on which the identity elements of the monoids act identically) is reduced to a unitary polygon over the discrete direct product of these monoids. The description of bipolygons over the semigroups of left and right zeros is also obtained.
Keywords: semigroup, unitary bipolygon, monoid, semigroup of left (right) zeros.
Mots-clés : bipolygon, multipolygon
@article{MZM_2010_87_6_a6,
     author = {M. Yu. Maksimovskiy},
     title = {Bipolygons and {Multipolygons} over {Semigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--866},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a6/}
}
TY  - JOUR
AU  - M. Yu. Maksimovskiy
TI  - Bipolygons and Multipolygons over Semigroups
JO  - Matematičeskie zametki
PY  - 2010
SP  - 855
EP  - 866
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a6/
LA  - ru
ID  - MZM_2010_87_6_a6
ER  - 
%0 Journal Article
%A M. Yu. Maksimovskiy
%T Bipolygons and Multipolygons over Semigroups
%J Matematičeskie zametki
%D 2010
%P 855-866
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a6/
%G ru
%F MZM_2010_87_6_a6
M. Yu. Maksimovskiy. Bipolygons and Multipolygons over Semigroups. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 855-866. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a6/

[1] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, de Gruyter Exp. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[2] A. Yu. Avdeyev, I. B. Kozhukhov, “Acts over completely 0-simple semigroups”, Acta Cybernet., 14:4 (2000), 523–531 | MR | Zbl

[3] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[4] Q. Wang, S. L. Wismath, “Generalized inflations and null extensions”, Discuss. Math. Gen. Algebra Appl., 24:2 (2004), 225–249 | MR | Zbl