On Holomorphic Motions of~$n$-Symmetric Functions
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 848-854.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize a problem examined by Duren on the univalence of a family of $n$-symmetric functions generated by integrals of functions of the form $\exp(\lambda \zeta^n)$. Our approach is based on the use of the inverse Faber transform, of the Martio–Sarvas univalence criterion, and of the $\lambda$-lemma of Mañé, Sad, and Sullivan. We also put forward a conjecture on the univalence of a family of $n$-symmetric functions, which is a weakened form of the Danikas–Ruscheweyh conjecture on the univalence of an integral transform of holomorphic functions.
Keywords: $n$-symmetric function, domain with quasiconformal boundary, Danikas–Ruscheweyh conjecture, holomorphic function.
Mots-clés : inverse Faber transform
@article{MZM_2010_87_6_a5,
     author = {I. R. Kayumov},
     title = {On {Holomorphic} {Motions} of~$n${-Symmetric} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {848--854},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a5/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - On Holomorphic Motions of~$n$-Symmetric Functions
JO  - Matematičeskie zametki
PY  - 2010
SP  - 848
EP  - 854
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a5/
LA  - ru
ID  - MZM_2010_87_6_a5
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T On Holomorphic Motions of~$n$-Symmetric Functions
%J Matematičeskie zametki
%D 2010
%P 848-854
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a5/
%G ru
%F MZM_2010_87_6_a5
I. R. Kayumov. On Holomorphic Motions of~$n$-Symmetric Functions. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 848-854. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a5/

[1] J. Becker, “Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen”, J. Reine Angew. Math., 255 (1972), 23–43 | MR | Zbl

[2] P. L. Duren, Univalent Functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983 | MR | Zbl

[3] V. N. Gaiduk, “Ob odnolistnosti reshenii obratnykh kraevykh zadach”, Tr. sem. po kraev. zadacham, 9, Izd-vo Kazanskogo un-ta, Kazan, 1972, 39–48 | MR | Zbl

[4] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1952 | MR | Zbl

[5] O. Martio, J. Sarvas, “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 4:2 (1979), 383–401 | MR | Zbl

[6] W. Smith, D. A. Stegenga, “Exponential integrability of the quasi-hyperbolic metric on Hölder domains”, Ann. Acad. Sci. Fenn. Ser. A I Math., 16:2 (1991), 345–360 | MR

[7] R. Mañé, P. Sad, D. Sullivan, “On the dynamics of rational maps”, Ann. Sci. École Norm. Sup. (4), 16:2 (1983), 193–217 | MR | Zbl

[8] I. Kayumov, “Lower estimate for the integral means spectrum for $p=-1$”, Proc. Amer. Math. Soc., 130:4 (2002), 1005–1007 | DOI | MR | Zbl

[9] N. Danikas, S. Ruscheweyh, “Semi-convex hulls of analytic functions in the unit disk”, Analysis (Munich), 19:4 (1999), 309–318 | MR | Zbl

[10] F. G. Avkhadiev, Konformnye otobrazheniya i kraevye zadachi, Monografii po matematike, 2, Kazanskii fond “Matematika”, Kazan, 1996 | MR | Zbl