Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_6_a5, author = {I. R. Kayumov}, title = {On {Holomorphic} {Motions} of~$n${-Symmetric} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {848--854}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a5/} }
I. R. Kayumov. On Holomorphic Motions of~$n$-Symmetric Functions. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 848-854. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a5/
[1] J. Becker, “Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen”, J. Reine Angew. Math., 255 (1972), 23–43 | MR | Zbl
[2] P. L. Duren, Univalent Functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983 | MR | Zbl
[3] V. N. Gaiduk, “Ob odnolistnosti reshenii obratnykh kraevykh zadach”, Tr. sem. po kraev. zadacham, 9, Izd-vo Kazanskogo un-ta, Kazan, 1972, 39–48 | MR | Zbl
[4] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1952 | MR | Zbl
[5] O. Martio, J. Sarvas, “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A I Math., 4:2 (1979), 383–401 | MR | Zbl
[6] W. Smith, D. A. Stegenga, “Exponential integrability of the quasi-hyperbolic metric on Hölder domains”, Ann. Acad. Sci. Fenn. Ser. A I Math., 16:2 (1991), 345–360 | MR
[7] R. Mañé, P. Sad, D. Sullivan, “On the dynamics of rational maps”, Ann. Sci. École Norm. Sup. (4), 16:2 (1983), 193–217 | MR | Zbl
[8] I. Kayumov, “Lower estimate for the integral means spectrum for $p=-1$”, Proc. Amer. Math. Soc., 130:4 (2002), 1005–1007 | DOI | MR | Zbl
[9] N. Danikas, S. Ruscheweyh, “Semi-convex hulls of analytic functions in the unit disk”, Analysis (Munich), 19:4 (1999), 309–318 | MR | Zbl
[10] F. G. Avkhadiev, Konformnye otobrazheniya i kraevye zadachi, Monografii po matematike, 2, Kazanskii fond “Matematika”, Kazan, 1996 | MR | Zbl