On Complex Matrices that Are Unitarily Similar to Real Matrices
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 840-847
Cet article a éte moissonné depuis la source Math-Net.Ru
There are well-known conditions ensuring that a complex $n\times n$ matrix $A$ can be converted by a similarity transformation into a real matrix. Is it possible to realize this conversion via unitary similarity rather than a general one? The following answer to this question is given in this paper: A matrix $A\in M_n(\mathbb C)$ can be made real by a unitary similarity transformation if and only if $A$ and $\overline A$ are unitarily similar and the matrix $P$ transforming $A$ into $\overline A$ can be chosen unitary and symmetric at the same time. Effective ways for verifying this criterion are discussed.
Mots-clés :
complex matrix
Keywords: unitary similarity transformation, irreducible matrix, block quaternion, Jordan block, Specht's criterion.
Keywords: unitary similarity transformation, irreducible matrix, block quaternion, Jordan block, Specht's criterion.
@article{MZM_2010_87_6_a4,
author = {Kh. D. Ikramov},
title = {On {Complex} {Matrices} that {Are} {Unitarily} {Similar} to {Real} {Matrices}},
journal = {Matemati\v{c}eskie zametki},
pages = {840--847},
year = {2010},
volume = {87},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a4/}
}
Kh. D. Ikramov. On Complex Matrices that Are Unitarily Similar to Real Matrices. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 840-847. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a4/
[1] G. E. Shilov, Matematicheskii analiz. Konechnomernye lineinye prostranstva, Nauka, M., 1969 | MR | Zbl
[2] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl
[3] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl
[4] Kh. D. Ikramov, “O konechnom ratsionalnom kriterii neprivodimosti matrits”, Vestn. Mosk. un-ta. Ser. 15. Vychislit. matem., kibernet., 2007, no. 3, 16–18 | MR | Zbl
[5] Kh. D. Ikramov, “O kompleksnykh matritsakh, oveschestvlyaemykh posredstvom unitarnogo podobiya”, Dokl. RAN, 430:1 (2010), 15–17