Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_6_a3, author = {T. A. Zherebyova}, title = {On a {Class} of {Sets} of {Uniqueness} for {Double} {Trigonometric} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {830--839}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a3/} }
T. A. Zherebyova. On a Class of Sets of Uniqueness for Double Trigonometric Series. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 830-839. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a3/
[1] J. M. Ash, C. Freiling, D. Rinne, “Uniqueness of rectangularly convergent trigonometric series”, Ann. of Math. (2), 137:1 (1993), 145–166 | DOI | MR | Zbl
[2] Sh. T. Tetunashvili, “O nekotorykh kratnykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 | MR | Zbl
[3] D. Rinne, “Rectangular and iterated convergence of multiple trigonometric series”, Real Anal. Exchange, 19:2 (1993/94), 644–650 | MR | Zbl
[4] N. Bary, “Sur l'unicité du développement trigonométrique”, Fundam. Math., 9 (1927), 62–115 | Zbl
[5] T. A. Zherebeva, “Ob odnom klasse mnozhestv edinstvennosti dlya dvoinykh ryadov Uolsha”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2007, no. 5, 13–18 | MR | Zbl
[6] I. I. Privalov, “Obobschenie teoremy Paul-du-Boys-Reymond'a”, Matem. sb., 31:2 (1923), 229–231 | Zbl
[7] V. A. Skvortsov, “Nekotorye obobscheniya teoremy edinstvennosti dlya ryadov po sisteme Uolsha”, Matem. zametki, 13:3 (1973), 367–372 | MR | Zbl