On a Class of Sets of Uniqueness for Double Trigonometric Series
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 830-839.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new class of sets of uniqueness for double trigonometric series in the case of rectangular convergence as well as prove the two-dimensional analog of Privalov's theorem.
Keywords: double trigonometric series, set of uniqueness for a series, Privalov's theorem, Lebesgue measurable function, Walsh system.
Mots-clés : rectangular convergence
@article{MZM_2010_87_6_a3,
     author = {T. A. Zherebyova},
     title = {On a {Class} of {Sets} of {Uniqueness} for {Double} {Trigonometric} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {830--839},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a3/}
}
TY  - JOUR
AU  - T. A. Zherebyova
TI  - On a Class of Sets of Uniqueness for Double Trigonometric Series
JO  - Matematičeskie zametki
PY  - 2010
SP  - 830
EP  - 839
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a3/
LA  - ru
ID  - MZM_2010_87_6_a3
ER  - 
%0 Journal Article
%A T. A. Zherebyova
%T On a Class of Sets of Uniqueness for Double Trigonometric Series
%J Matematičeskie zametki
%D 2010
%P 830-839
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a3/
%G ru
%F MZM_2010_87_6_a3
T. A. Zherebyova. On a Class of Sets of Uniqueness for Double Trigonometric Series. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 830-839. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a3/

[1] J. M. Ash, C. Freiling, D. Rinne, “Uniqueness of rectangularly convergent trigonometric series”, Ann. of Math. (2), 137:1 (1993), 145–166 | DOI | MR | Zbl

[2] Sh. T. Tetunashvili, “O nekotorykh kratnykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 | MR | Zbl

[3] D. Rinne, “Rectangular and iterated convergence of multiple trigonometric series”, Real Anal. Exchange, 19:2 (1993/94), 644–650 | MR | Zbl

[4] N. Bary, “Sur l'unicité du développement trigonométrique”, Fundam. Math., 9 (1927), 62–115 | Zbl

[5] T. A. Zherebeva, “Ob odnom klasse mnozhestv edinstvennosti dlya dvoinykh ryadov Uolsha”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2007, no. 5, 13–18 | MR | Zbl

[6] I. I. Privalov, “Obobschenie teoremy Paul-du-Boys-Reymond'a”, Matem. sb., 31:2 (1923), 229–231 | Zbl

[7] V. A. Skvortsov, “Nekotorye obobscheniya teoremy edinstvennosti dlya ryadov po sisteme Uolsha”, Matem. zametki, 13:3 (1973), 367–372 | MR | Zbl