Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_6_a2, author = {I. Vodova}, title = {$\mathrm{HL}${-Differentiability} is {Equivalent} to $\mathrm{MB}^\sharp${-Differentiability}}, journal = {Matemati\v{c}eskie zametki}, pages = {825--829}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a2/} }
I. Vodova. $\mathrm{HL}$-Differentiability is Equivalent to $\mathrm{MB}^\sharp$-Differentiability. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 825-829. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a2/
[1] V. I. Averbukh, O. G. Smolyanov, “Differentsirovanie i psevdotopologii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1972, no. 1, 3–7 | MR | Zbl
[2] A. Frölicher, W. Bucher, Calculus in Vector Spaces without Norm, Lecture Notes in Math., 30, Springer-Verlag, Berlin–New York, 1966 | DOI | MR | Zbl
[3] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4 (1968), 67–116 | MR | Zbl