$\mathrm{HL}$-Differentiability is Equivalent to $\mathrm{MB}^\sharp$-Differentiability
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 825-829.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1972, it was announced by Averbukh and Smolyanov that $\mathrm{HL}$-differentiability is equivalent to $\mathrm{FB}^\sharp$-differentiability. The proof has not been published till now. Here we prove a stronger result, namely, the one formulated in the title.
Keywords: filter, pseudotopology, differentiability, differentiability in the sense of Frölicher and Bucher, in the sense of Michael and Bastiani, and in the sense of Hyers and Lang.
@article{MZM_2010_87_6_a2,
     author = {I. Vodova},
     title = {$\mathrm{HL}${-Differentiability} is {Equivalent} to $\mathrm{MB}^\sharp${-Differentiability}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--829},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a2/}
}
TY  - JOUR
AU  - I. Vodova
TI  - $\mathrm{HL}$-Differentiability is Equivalent to $\mathrm{MB}^\sharp$-Differentiability
JO  - Matematičeskie zametki
PY  - 2010
SP  - 825
EP  - 829
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a2/
LA  - ru
ID  - MZM_2010_87_6_a2
ER  - 
%0 Journal Article
%A I. Vodova
%T $\mathrm{HL}$-Differentiability is Equivalent to $\mathrm{MB}^\sharp$-Differentiability
%J Matematičeskie zametki
%D 2010
%P 825-829
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a2/
%G ru
%F MZM_2010_87_6_a2
I. Vodova. $\mathrm{HL}$-Differentiability is Equivalent to $\mathrm{MB}^\sharp$-Differentiability. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 825-829. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a2/

[1] V. I. Averbukh, O. G. Smolyanov, “Differentsirovanie i psevdotopologii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1972, no. 1, 3–7 | MR | Zbl

[2] A. Frölicher, W. Bucher, Calculus in Vector Spaces without Norm, Lecture Notes in Math., 30, Springer-Verlag, Berlin–New York, 1966 | DOI | MR | Zbl

[3] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4 (1968), 67–116 | MR | Zbl