A Short Note on the Frobenius Norm of the Commutator
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 934-939
Cet article a éte moissonné depuis la source Math-Net.Ru
This note mainly aims to improve the inequality, proposed by Böttcher and Wenzel, giving the upper bound of the Frobenius norm of the commutator of two particular matrices in $\mathbb R^{n\times n}$. We first propose a new upper bound on basis of the Böttcher and Wenzel's inequality. Motivated by the method used, the inequality $\|\boldsymbol{XY}-\boldsymbol{YX}\|_F^2\le2\|\boldsymbol X\|_F^2\|\boldsymbol Y\|_F^2$ is finally improved into $$ \|\boldsymbol{XY}-\boldsymbol{YX}\|_F^2\le2\|\boldsymbol X\|_F^2\|\boldsymbol Y\|_F^2-2[\operatorname{tr}(\boldsymbol X^T\boldsymbol Y)]^2. $$ In addition, a further improvement is made.
Keywords:
commutator, Böttcher and Wenzel's conjecture
Mots-clés : Frobenius norm, random matrix.
Mots-clés : Frobenius norm, random matrix.
@article{MZM_2010_87_6_a13,
author = {Yan-Dong Wu and Xu-Qing Liu},
title = {A {Short} {Note} on the {Frobenius} {Norm} of the {Commutator}},
journal = {Matemati\v{c}eskie zametki},
pages = {934--939},
year = {2010},
volume = {87},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a13/}
}
Yan-Dong Wu; Xu-Qing Liu. A Short Note on the Frobenius Norm of the Commutator. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 934-939. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a13/
[1] A. Böttcher, D. Wenzel, “How big can the commutator of two matrices be and how big is it typically?”, Linear Algebra Appl., 403 (2005), 216–228 | DOI | MR | Zbl
[2] L. László, “Proof of Böttcher and Wenzel's conjecture on commutator norms for 3-by-3 matrices”, Linear Algebra Appl., 422:2-3 (2007), 659–663 | DOI | MR | Zbl
[3] S.-W. Vong, X.-Q. Jin, “Proof of Böttcher and Wenzel's conjecture”, Oper. Matrices, 2:3 (2008), 435–442 | MR | Zbl
[4] A. Böttcher, D. Wenzel, “The Frobenius norm and the commutator”, Linear Algebra Appl., 429:8-9 (2008), 1864–1885 | DOI | MR | Zbl