A Short Note on the Frobenius Norm of the Commutator
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 934-939 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This note mainly aims to improve the inequality, proposed by Böttcher and Wenzel, giving the upper bound of the Frobenius norm of the commutator of two particular matrices in $\mathbb R^{n\times n}$. We first propose a new upper bound on basis of the Böttcher and Wenzel's inequality. Motivated by the method used, the inequality $\|\boldsymbol{XY}-\boldsymbol{YX}\|_F^2\le2\|\boldsymbol X\|_F^2\|\boldsymbol Y\|_F^2$ is finally improved into $$ \|\boldsymbol{XY}-\boldsymbol{YX}\|_F^2\le2\|\boldsymbol X\|_F^2\|\boldsymbol Y\|_F^2-2[\operatorname{tr}(\boldsymbol X^T\boldsymbol Y)]^2. $$ In addition, a further improvement is made.
Keywords: commutator, Böttcher and Wenzel's conjecture
Mots-clés : Frobenius norm, random matrix.
@article{MZM_2010_87_6_a13,
     author = {Yan-Dong Wu and Xu-Qing Liu},
     title = {A {Short} {Note} on the {Frobenius} {Norm} of the {Commutator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {934--939},
     year = {2010},
     volume = {87},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a13/}
}
TY  - JOUR
AU  - Yan-Dong Wu
AU  - Xu-Qing Liu
TI  - A Short Note on the Frobenius Norm of the Commutator
JO  - Matematičeskie zametki
PY  - 2010
SP  - 934
EP  - 939
VL  - 87
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a13/
LA  - ru
ID  - MZM_2010_87_6_a13
ER  - 
%0 Journal Article
%A Yan-Dong Wu
%A Xu-Qing Liu
%T A Short Note on the Frobenius Norm of the Commutator
%J Matematičeskie zametki
%D 2010
%P 934-939
%V 87
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a13/
%G ru
%F MZM_2010_87_6_a13
Yan-Dong Wu; Xu-Qing Liu. A Short Note on the Frobenius Norm of the Commutator. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 934-939. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a13/

[1] A. Böttcher, D. Wenzel, “How big can the commutator of two matrices be and how big is it typically?”, Linear Algebra Appl., 403 (2005), 216–228 | DOI | MR | Zbl

[2] L. László, “Proof of Böttcher and Wenzel's conjecture on commutator norms for 3-by-3 matrices”, Linear Algebra Appl., 422:2-3 (2007), 659–663 | DOI | MR | Zbl

[3] S.-W. Vong, X.-Q. Jin, “Proof of Böttcher and Wenzel's conjecture”, Oper. Matrices, 2:3 (2008), 435–442 | MR | Zbl

[4] A. Böttcher, D. Wenzel, “The Frobenius norm and the commutator”, Linear Algebra Appl., 429:8-9 (2008), 1864–1885 | DOI | MR | Zbl