On Multilinear Components of Prime Subvarieties in the Variety $\mathrm{Var}(M_{1,1})$
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 919-933
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $M_{1,1}$ be the matrix superalgebra over an infinite field of positive characteristic $p\ne2$. Multilinear identities of prime subvarieties in the variety $\operatorname{Var}M_{1,1}$ are described. It is shown that the set of multilinear identities of any prime subvariety in the variety $\operatorname{Var}M_{1,1}$ either coincides with the set of multilinear identities of the algebra $M_{1,1}$ or is generated by the identity $[x,y,z]=0$ or is generated by the identity $[x,y]=0$.
Keywords:
prime subvariety, matrix superalgebra, multilinear identities, variety of associative algebras, Grassmann algebra, prime variety.
@article{MZM_2010_87_6_a12,
author = {L. M. Samoilov},
title = {On {Multilinear} {Components} of {Prime} {Subvarieties} in the {Variety} $\mathrm{Var}(M_{1,1})$},
journal = {Matemati\v{c}eskie zametki},
pages = {919--933},
year = {2010},
volume = {87},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a12/}
}
L. M. Samoilov. On Multilinear Components of Prime Subvarieties in the Variety $\mathrm{Var}(M_{1,1})$. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 919-933. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a12/
[1] A. R. Kemer, Ideal of Identities of Associative Algebras, Transl. Math. Monogr., 87, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[2] A. Kemer, “Remarks on the prime varieties”, Israel J. Math., 96 (1996), 341–356 | DOI | MR | Zbl
[3] A. Kemer, “Multilinear components of the prime subvarieties of the variety $\mathrm{Var}(M_2(F))$”, Algebr. Represent. Theory, 4:1 (2001), 87–104 | DOI | MR | Zbl
[4] A. Ya. Belov, “Assotsiativnykh $PI$-algebr, sovpadayuschikh so svoim kommutantom, ne suschestvuet”, Sib. matem. zhurn., 44:6 (2003), 1239–1254 | MR | Zbl
[5] V. N. Latyshev, “O konechnoi porozhdennosti $T$-ideala s elementom $[x_1,x_2,x_3,x_4]$”, Sib. matem. zhurn., 6:6 (1965), 1432–1434 | MR | Zbl