The Cauchy Problem for the Wave Equation with L\'evy Laplacian
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 803-813.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the solution of the Cauchy problem (the initial-value problem in the whole space) for the wave equation with infinite-dimensional Lévy Laplacian $\Delta _L$, $$ \frac{\partial^2 U(t,x)}{\partial t^2}=\Delta_LU(t,x) $$ in two function classes, the Shilov class and the Gâteaux class.
Keywords: wave equation, hyperbolic equation, Lévy Laplacian, Cauchy problem, Shilov function class, Hilbert space, variational derivative.
Mots-clés : Gâteaux function class
@article{MZM_2010_87_6_a0,
     author = {S. A. Albeverio and Ya. I. Belopol'skaya and M. N. Feller},
     title = {The {Cauchy} {Problem} for the {Wave} {Equation} with {L\'evy} {Laplacian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--813},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a0/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - Ya. I. Belopol'skaya
AU  - M. N. Feller
TI  - The Cauchy Problem for the Wave Equation with L\'evy Laplacian
JO  - Matematičeskie zametki
PY  - 2010
SP  - 803
EP  - 813
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a0/
LA  - ru
ID  - MZM_2010_87_6_a0
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A Ya. I. Belopol'skaya
%A M. N. Feller
%T The Cauchy Problem for the Wave Equation with L\'evy Laplacian
%J Matematičeskie zametki
%D 2010
%P 803-813
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a0/
%G ru
%F MZM_2010_87_6_a0
S. A. Albeverio; Ya. I. Belopol'skaya; M. N. Feller. The Cauchy Problem for the Wave Equation with L\'evy Laplacian. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 803-813. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a0/

[1] M. N. Feller, The Lévy Laplacian, Cambridge Tracts in Math., 166, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[2] P. Lévy, Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951 | MR | Zbl

[3] G. E. Shilov, “O nekotorykh voprosakh analiza v gilbertovom prostranstve, I”, Funkts. analiz i ego pril., 1:2 (1967), 81–90 | MR | Zbl

[4] R. Courant, D. Hilbert, Methods of Mathematical Physics, v. II, Partial Differential Equations, Interscience Publ., New York, 1962 | MR | Zbl