Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_5_a9, author = {S. A. Nazarov}, title = {Opening of a {Gap} in the {Continuous} {Spectrum} of a {Periodically} {Perturbed} {Waveguide}}, journal = {Matemati\v{c}eskie zametki}, pages = {764--786}, publisher = {mathdoc}, volume = {87}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a9/} }
S. A. Nazarov. Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 764-786. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a9/
[1] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR
[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR
[3] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[4] A. Figotin, P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model”, SIAM J. Appl. Math., 56:1 (1996), 68–88 | DOI | MR | Zbl
[5] E. L. Green, “Spectral theory of Laplace–Beltrami operators with periodic metrics”, J. Differential Equations, 133:1 (1997), 15–29 | DOI | MR | Zbl
[6] R. Hempel, K. Lienau, “Spectral properties of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 25:7–8 (2000), 1445–1470 | DOI | MR | Zbl
[7] L. Friedlander, “On the density of states of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 27:1–2 (2002), 355–380 | DOI | MR | Zbl
[8] N. Filonov, “Gaps in the spectrum of the Maxwell operator with periodic coefficients”, Comm. Math. Phys., 240:1–2 (2003), 161–170 | DOI | MR | Zbl
[9] V. V. Zhikov, “O lakunakh v spektre nekotorykh divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58 | MR | Zbl
[10] P. A. Kuchment, “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, UMN, 37:4 (1982), 3–52 | MR | Zbl
[11] P. Kuchment, “The mathematics of photonic crystals”, Mathematical Modeling in Optical Science, Frontiers Appl. Math., 22, SIAM, Philadelphia, PA, 2001, 207–272 | MR | Zbl
[12] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, v. I, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000 | MR | Zbl
[13] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR | Zbl
[14] M. M. Skriganov, Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov, Tr. MIAN SSSR, 171, Izd-vo «Nauka», Leningrad. otd., L., 1985 | MR | Zbl
[15] P. Kuchment, Floquet Theory for Partial Differential Equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993 | MR | Zbl
[16] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[17] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl
[18] S. A. Nazarov, “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 101–112 | MR | Zbl
[19] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Izd-vo Mosk. un-ta, M., 1963, 219–292
[20] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl
[21] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl
[22] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | MR | Zbl
[23] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[24] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR | Zbl
[25] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Modél. Math. Anal. Numér., 27:6 (1993), 777–799 | MR | Zbl
[26] I. V. Kamotskii, S. A. Nazarov, “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. SPbMO, 6, Nauchnaya kniga, Novosibirsk, 1998, 151–212 | MR
[27] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl
[28] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[29] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl
[30] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl