Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 764-786.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that a small periodic singular or regular perturbation of the boundary of a cylindrical three-dimensional waveguide can open up a gap in the continuous spectrum of the Dirichlet problem for the Laplace operator in the resulting periodic waveguide. A singular perturbation results in the formation of a periodic family of small cavities while a regular one leads to a gentle periodic bending of the boundary. If the period is short, there is no gap, while if it is long, a gap appears immediately after the first segment of the continuous spectrum. The result is obtained by asymptotic analysis of the eigenvalues of an auxiliary problem on the perturbed cell of periodicity.
Keywords: cylindrical waveguide, gap in a continuous spectrum, Laplace operator, Dirichlet problem, Helmholtz equation, cell of periodicity, Sobolev space.
@article{MZM_2010_87_5_a9,
     author = {S. A. Nazarov},
     title = {Opening of a {Gap} in the {Continuous} {Spectrum} of a {Periodically} {Perturbed} {Waveguide}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {764--786},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide
JO  - Matematičeskie zametki
PY  - 2010
SP  - 764
EP  - 786
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a9/
LA  - ru
ID  - MZM_2010_87_5_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide
%J Matematičeskie zametki
%D 2010
%P 764-786
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a9/
%G ru
%F MZM_2010_87_5_a9
S. A. Nazarov. Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 764-786. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a9/

[1] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[3] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[4] A. Figotin, P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model”, SIAM J. Appl. Math., 56:1 (1996), 68–88 | DOI | MR | Zbl

[5] E. L. Green, “Spectral theory of Laplace–Beltrami operators with periodic metrics”, J. Differential Equations, 133:1 (1997), 15–29 | DOI | MR | Zbl

[6] R. Hempel, K. Lienau, “Spectral properties of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 25:7–8 (2000), 1445–1470 | DOI | MR | Zbl

[7] L. Friedlander, “On the density of states of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 27:1–2 (2002), 355–380 | DOI | MR | Zbl

[8] N. Filonov, “Gaps in the spectrum of the Maxwell operator with periodic coefficients”, Comm. Math. Phys., 240:1–2 (2003), 161–170 | DOI | MR | Zbl

[9] V. V. Zhikov, “O lakunakh v spektre nekotorykh divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58 | MR | Zbl

[10] P. A. Kuchment, “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, UMN, 37:4 (1982), 3–52 | MR | Zbl

[11] P. Kuchment, “The mathematics of photonic crystals”, Mathematical Modeling in Optical Science, Frontiers Appl. Math., 22, SIAM, Philadelphia, PA, 2001, 207–272 | MR | Zbl

[12] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, v. I, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000 | MR | Zbl

[13] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR | Zbl

[14] M. M. Skriganov, Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov, Tr. MIAN SSSR, 171, Izd-vo «Nauka», Leningrad. otd., L., 1985 | MR | Zbl

[15] P. Kuchment, Floquet Theory for Partial Differential Equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993 | MR | Zbl

[16] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[17] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[18] S. A. Nazarov, “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 101–112 | MR | Zbl

[19] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Izd-vo Mosk. un-ta, M., 1963, 219–292

[20] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[21] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81 (1978), 25–82 | DOI | MR | Zbl

[22] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | MR | Zbl

[23] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[24] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR | Zbl

[25] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Modél. Math. Anal. Numér., 27:6 (1993), 777–799 | MR | Zbl

[26] I. V. Kamotskii, S. A. Nazarov, “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. SPbMO, 6, Nauchnaya kniga, Novosibirsk, 1998, 151–212 | MR

[27] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[28] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[29] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl

[30] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl