On the Constants in the Estimates of the Rate of Convergence in von~Neumann's Ergodic Theorem
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 756-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the rate of convergence in von Neumann's ergodic theorem. We obtain constants connecting the power rate of convergence of ergodic means and the power singularity at zero of the spectral measure of the corresponding dynamical system (these concepts are equivalent to each other). All the results of the paper have obvious exact analogs for wide-sense stationary stochastic processes.
Keywords: von Neumann's ergodic theorem, ergodic mean, spectral measure, dynamical system, wide-sense stationary stochastic process, Darboux sum.
Mots-clés : correlation coefficient
@article{MZM_2010_87_5_a8,
     author = {A. G. Kachurovskii and V. V. Sedalishchev},
     title = {On the {Constants} in the {Estimates} of the {Rate} of {Convergence} in {von~Neumann's} {Ergodic} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {756--763},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a8/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - V. V. Sedalishchev
TI  - On the Constants in the Estimates of the Rate of Convergence in von~Neumann's Ergodic Theorem
JO  - Matematičeskie zametki
PY  - 2010
SP  - 756
EP  - 763
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a8/
LA  - ru
ID  - MZM_2010_87_5_a8
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A V. V. Sedalishchev
%T On the Constants in the Estimates of the Rate of Convergence in von~Neumann's Ergodic Theorem
%J Matematičeskie zametki
%D 2010
%P 756-763
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a8/
%G ru
%F MZM_2010_87_5_a8
A. G. Kachurovskii; V. V. Sedalishchev. On the Constants in the Estimates of the Rate of Convergence in von~Neumann's Ergodic Theorem. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 756-763. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a8/

[1] A. G. Kachurovskii, “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | MR | Zbl

[2] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] J. von Neumann, “Proof of quasi-ergodic hypothesis”, Proc. Natl. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI | Zbl

[4] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965 | MR | Zbl

[5] V. F. Gaposhkin, “Skhodimost ryadov, svyazannykh so statsionarnymi posledovatelnostyami”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1366–1392 | MR | Zbl