Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 734-755

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the exact exponent of summability of the Fourier transform of signed measures concentrated on differentiable curves of finite type. We study the behavior of oscillatory integral operators related to the Fourier transform of signed measures concentrated on curves. We obtain necessary and sufficient conditions for the boundedness of the Fourier transform on smooth curves of finite type.
Keywords: oscillatory integral, exponent of summability, versal deformation, Randol function, differentiable curve, diffeomorphism group.
Mots-clés : Fourier transform
@article{MZM_2010_87_5_a7,
     author = {I. A. Ikromov},
     title = {Summability of {Oscillatory} {Integrals} over {Parameters} and the {Boundedness} {Problem} for {Fourier} {Transforms} on {Curves}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--755},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/}
}
TY  - JOUR
AU  - I. A. Ikromov
TI  - Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves
JO  - Matematičeskie zametki
PY  - 2010
SP  - 734
EP  - 755
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/
LA  - ru
ID  - MZM_2010_87_5_a7
ER  - 
%0 Journal Article
%A I. A. Ikromov
%T Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves
%J Matematičeskie zametki
%D 2010
%P 734-755
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/
%G ru
%F MZM_2010_87_5_a7
I. A. Ikromov. Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 734-755. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/