Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 734-755.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the exact exponent of summability of the Fourier transform of signed measures concentrated on differentiable curves of finite type. We study the behavior of oscillatory integral operators related to the Fourier transform of signed measures concentrated on curves. We obtain necessary and sufficient conditions for the boundedness of the Fourier transform on smooth curves of finite type.
Keywords: oscillatory integral, exponent of summability, versal deformation, Randol function, differentiable curve, diffeomorphism group.
Mots-clés : Fourier transform
@article{MZM_2010_87_5_a7,
     author = {I. A. Ikromov},
     title = {Summability of {Oscillatory} {Integrals} over {Parameters} and the {Boundedness} {Problem} for {Fourier} {Transforms} on {Curves}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--755},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/}
}
TY  - JOUR
AU  - I. A. Ikromov
TI  - Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves
JO  - Matematičeskie zametki
PY  - 2010
SP  - 734
EP  - 755
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/
LA  - ru
ID  - MZM_2010_87_5_a7
ER  - 
%0 Journal Article
%A I. A. Ikromov
%T Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves
%J Matematičeskie zametki
%D 2010
%P 734-755
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/
%G ru
%F MZM_2010_87_5_a7
I. A. Ikromov. Summability of Oscillatory Integrals over Parameters and the Boundedness Problem for Fourier Transforms on Curves. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 734-755. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a7/

[1] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, 2-e izd., ispr. i dop., Nauka, M., 1980 | MR | Zbl

[2] L.-K. Hua, “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1:1 (1952), 1–76 | MR

[3] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Trigonometricheskie integraly”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 971–1003 | MR | Zbl

[4] I. A. Ikromov, “On the convergence exponent of trigonometric integrals”, Analiticheskaya teoriya chisel i prilozheniya, Sbornik statei. K 60-letiyu so dnya rozhdeniya professora Anatoliya Alekseevicha Karatsuby, Tr. MIAN, 218, Nauka, M., 1997, 179–189 | MR | Zbl

[5] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[6] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math., 105, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[7] G. Mokenhaupt, Bounds in Lebesgue Spaces of Oscillatory Integral Operators, Habilitationsschrift, Universität Siegen, 1996

[8] M. Christ, “On the restriction of the Fourier transform to curves: endpoint results and the degenerate case”, Trans. Amer. Math. Soc., 287:1 (1985), 223–238 | DOI | MR | Zbl

[9] S. W. Drury, “Degenerate curves and harmonic analysis”, Math. Proc. Cambridge Philos. Soc., 108:1 (1990), 89–96 | DOI | MR | Zbl

[10] L. Hörmander, “Oscillatory integrals and multipliers on $FL^p$”, Ark. Mat., 11 (1973), 1–11 | DOI | MR | Zbl

[11] J.-G. Bak, S. Lee, “Estimates for an oscillatory integral operator related to restriction to space curves”, Proc. Amer. Math. Soc., 132:5 (2004), 1393–1401 | DOI | MR | Zbl

[12] Dzh. Khadzhiev, Prilozheniya teorii invariantov k differentsialnoi geometrii krivykh, FAN, Tashkent, 1988 | MR | Zbl

[13] V. I. Arnold, A. N. Varchenko, S. M. Gusein-zade, Osobennosti differentsiruemykh otobrazhenii, v. 1, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR | Zbl

[14] L. Carleson, P. Sjölin, “Oscillatory integrals and a multiplier problem for the disc”, Studia Math., 44 (1972), 287–299 | MR | Zbl

[15] I. A. Ikromov, “Invariantnye otsenki dvumernykh trigonometricheskikh integralov”, Matem. sb., 180:8 (1989), 1017–1032 | MR | Zbl

[16] D. A. Popov, “Vosstanovlenie kharakteristicheskikh funktsii v dvumernoi radonovskoi tomografii”, UMN, 53:1 (1998), 115–198 | MR | Zbl

[17] B. Randol, “On the asymptotic behavior of the Fourier transform of the indicator function of a convex set”, Trans. Amer. Math. Soc., 139 (1969), 279–285 | DOI | MR | Zbl

[18] J. Duistermaat, “Oscillatory integrals, Lagrange immersions and unfolding of singularities”, Comm. Pure Appl. Math., 27:2 (1974), 207–281 | DOI | MR | Zbl

[19] I. A. Ikromov, “Ob otsenke preobrazovaniya Fure indikatora nevypuklykh oblastei”, Funkts. analiz i ego pril., 29:3 (1995), 16–24 | MR | Zbl

[20] Y. Domar, “On the Banach algebra $A(G)$ for smooth sets $\Gamma\subset\mathbb R^n$”, Comment. Math. Helv., 52:3 (1977), 357–371 | DOI | MR | Zbl

[21] V. N. Karpushkin, “Ravnomernye otsenki ostsilliruyuschikh integralov s parabolicheskoi ili giperbolicheskoi fazoi”, Tr. sem. im. I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 3–39 | MR | Zbl

[22] V. Giiemin, S. Sternberg, Geometricheskie asimptotiki, Mir, M., 1981 | MR | Zbl

[23] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl