Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating Coefficients
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 704-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_p(\mathbb R^n)$, $1$, we consider a new class of integral operators with kernels homogeneous of degree $-n$, which includes the class of operators with homogeneous $SO(n)$-invariant kernels; we study the Banach algebra generated by such operators with multiplicatively weakly oscillating coefficients. For operators from this algebra, we define a symbol in terms of which we formulate a Fredholm property criterion and derive a formula for calculating the index. An important stage in obtaining these results is the establishment of the relationship between the operators of the class under study and the operators of one-dimensional convolution with weakly oscillating compact coefficients.
Keywords: multidimensional integral operator, operators with multiplicatively weakly oscillating coefficients, homogeneous kernel, convolution operator, the space $L_p(\mathbb R^n)$.
@article{MZM_2010_87_5_a5,
     author = {V. M. Deundyak},
     title = {Multidimensional {Integral} {Operators} with {Homogeneous} {Kernels} of {Compact} {Type} and {Multiplicatively} {Weakly} {Oscillating}  {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {704--720},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a5/}
}
TY  - JOUR
AU  - V. M. Deundyak
TI  - Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating  Coefficients
JO  - Matematičeskie zametki
PY  - 2010
SP  - 704
EP  - 720
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a5/
LA  - ru
ID  - MZM_2010_87_5_a5
ER  - 
%0 Journal Article
%A V. M. Deundyak
%T Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating  Coefficients
%J Matematičeskie zametki
%D 2010
%P 704-720
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a5/
%G ru
%F MZM_2010_87_5_a5
V. M. Deundyak. Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and Multiplicatively Weakly Oscillating  Coefficients. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 704-720. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a5/

[1] L. G. Mikhailov, “Novyi klass osobykh integralnykh uravnenii”, Math. Nachr., 76 (1977), 91–107 | DOI | MR | Zbl

[2] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl

[3] N. K. Karapetyants, “O neobkhodimykh usloviyakh ogranichennosti operatora s neotritsatelnym kvaziodnorodnym yadrom”, Matem. zametki, 30:5 (1981), 787–794 | MR | Zbl

[4] O. G. Avsyankin, N. K. Karapetyants, “Mnogomernye integralnye operatory s odnorodnymi stepeni $-n$ yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[5] O. G. Avsyankin, N. K. Karapetyants, “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi yadrami s peremennymi koeffitsientami”, Izv. vuzov. Matem., 2001, no. 1, 3–10 | MR | Zbl

[6] O. G. Avsyankin, “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 73:4 (2003), 483–493 | MR | Zbl

[7] O. G. Avsyankin, V. M. Deundyak, “O vychislenii indeksa mnogomernykh integralnykh operatorov s biodnorodnymi yadrami”, Dokl. RAN, 391:1 (2003), 7–9 | MR | Zbl

[8] O. G. Avsyankin, V. M. Deundyak, “Ob indekse mnogomernykh integralnykh operatorov s biodnorodnymi yadrami i peremennymi koeffitsientami”, Izv. vuzov. Matem., 2005, no. 3, 3–12 | MR | Zbl

[9] O. G. Avsyankin, “Mnogomernye integralnye operatory s biodnorodnymi yadrami: proektsionnyi metod i psevdospektry”, Sib. matem. zhurn., 47:3 (2006), 501–513 | MR | Zbl

[10] O. G. Avsyankin, V. M. Deundyak, “Ob algebre mnogomernykh integralnykh operatorov s odnorodnymi $SO(n)$-invariantnymi yadrami i radialno slabo ostsilliruyuschimi koeffitsientami”, Matem. zametki, 82:2 (2007), 163–176 | MR

[11] H. O. Cordess, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal, 18:2 (1975), 115–131 | DOI | MR

[12] B. Ya. Shteinberg, “Ob operatorakh tipa svertki na lokalno kompaktnykh gruppakh”, Funkts. analiz i ego pril., 15:3 (1981), 95–96 | MR | Zbl

[13] L. A. Lyusternik, V. I. Sobolev, Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR | Zbl

[14] V. M. Deundyak, B. Ya. Shteinberg, “Ob indekse operatorov svertki s medlenno izmenyayuschimisya koeffitsientami na abelevykh gruppakh”, Funkts. analiz i ego pril., 19:4 (1985), 84–85 | MR | Zbl

[15] V. M. Deundyak, B. Ya. Shteinberg, “Vychislenie indeksa operatorov svertki s medlenno izmenyayuschimisya koeffitsientami na abelevykh gruppakh”, Matematicheskii analiz i ego prilozheniya, Izd-vo Rostovsk. gos. un-ta, Rostov-na-Donu, 1992, 64–70 | MR

[16] I. B. Simonenko, Lokalnyi metod v teorii invariantnykh otnositelno sdviga operatorov i ikh ogibayuschikh, TsVVR, Rostov-na-Donu, 2007

[17] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, GIFML, M., 1958 | MR | Zbl

[18] V. M. Deundyak, “Indeks semeistv operatorov svertki na abelevykh gruppakh”, Sib. matem. zhurn., 31:1 (1990), 70–78 | MR | Zbl

[19] V. S. Pilidi, L. I. Sazonov, “Lokalnyi metod v teorii operatorov tipa bisingulyarnykh”, Izv. vuzov. Severo-Kavkazsk. reg. Estestv. nauki, 2005, Spetsvypusk. Psevdodifferentsialnye uravneniya i nekotorye problemy matematicheskoi fiziki, 100–106

[20] V. M. Deundyak, E. A. Stepanyuchenko, “Ob integralnykh operatorakh s odnorodnymi yadrami posloino singulyarnogo tipa v prostranstve $L_p(R^2)$”, Vestn. DGTU, 7:2 (2007), 161–168