On an Inverse Problem for an Abstract Differential Equation of Fractional Order
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 684-693.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Banach space, we consider the problem of determining the solution and a summand of a differential equation of fractional order from the initial and redundant conditions containing fractional Riemann–Liouville integrals. It is shown that the solvability of the problem under consideration depends on the distribution of zeros of the Mittag–Leffler function.
Keywords: differential equation of fractional order, Riemann–Liouville integral, densely defined linear operator, Mittag–Leffler function, Cesàro mean, Banach space.
@article{MZM_2010_87_5_a3,
     author = {A. V. Glushak},
     title = {On an {Inverse} {Problem} for an {Abstract} {Differential} {Equation} of {Fractional} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {684--693},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a3/}
}
TY  - JOUR
AU  - A. V. Glushak
TI  - On an Inverse Problem for an Abstract Differential Equation of Fractional Order
JO  - Matematičeskie zametki
PY  - 2010
SP  - 684
EP  - 693
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a3/
LA  - ru
ID  - MZM_2010_87_5_a3
ER  - 
%0 Journal Article
%A A. V. Glushak
%T On an Inverse Problem for an Abstract Differential Equation of Fractional Order
%J Matematičeskie zametki
%D 2010
%P 684-693
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a3/
%G ru
%F MZM_2010_87_5_a3
A. V. Glushak. On an Inverse Problem for an Abstract Differential Equation of Fractional Order. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 684-693. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a3/

[1] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Monogr. Textbooks Pure Appl. Math., 231, New York, 2000 | MR | Zbl

[2] Yu. S. Eidelman, “Dvukhtochechnaya kraevaya zadacha dlya differentsialnogo uravneniya s parametrom”, Dokl. AN USSR. Ser. A, 1983, no. 4, 15–18 | MR | Zbl

[3] Yu. S. Eidelman, “Odna obratnaya zadacha dlya evolyutsionnogo uravneniya”, Matem. zametki, 49:5 (1991), 135–141 | MR | Zbl

[4] I. V. Tikhonov, Yu. S. Eidelman, “Obratnaya zadacha dlya differentsialnogo uravneniya v banakhovom prostranstve i raspredelenie nulei tseloi funktsii Mittag-Lefflera”, Differents. uravneniya, 38:5 (2002), 637–644 | MR | Zbl

[5] I. V. Tikhonov, Yu. S. Eidelman, “Kriterii edinstvennosti v obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya s nestatsionarnym neodnorodnym slagaemym”, Matem. zametki, 77:2 (2005), 273–290 | MR | Zbl

[6] A. V. Glushak, “O zadache tipa Koshi dlya abstraktnogo differentsialnogo uravneniya s drobnoi proizvodnoi”, Vestn. VGU. Ser. Fiz. Matem., 2001, no. 2, 74–77 | Zbl

[7] A. V. Glushak, “O zadache tipa Koshi dlya neodnorodnogo abstraktnogo differentsialnogo uravneniya s drobnoi proizvodnoi”, Vestn. VGU. Ser. Fiz. Matem., 2002, no. 1, 121–123 | Zbl

[8] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math., 96, Birkhäuser Verlag, Basel, 2001 | MR | Zbl

[9] V. A. Kostin, “K zadache Koshi dlya abstraktnykh differentsialnykh uravnenii s drobnymi proizvodnymi”, Dokl. RAN, 326:4 (1992), 597–600 | MR | Zbl

[10] A. M. Sedletskii, “O nulyakh funktsii tipa Mittag-Lefflera”, Matem. zametki, 68:5 (2000), 710–724 | MR | Zbl

[11] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[12] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR | Zbl