On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 669-683

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the exact values of the best $L_1$-approximations of classes $W^rF$, $r\in\mathbb N$, of periodic functions whose $r$th derivative belongs to a given rearrangement-invariant set $F$, as well as of classes $W^rH^\omega$ of periodic functions whose $r$th derivative has a given convex (upward) majorant $\omega(t)$ of the modulus of continuity, by subspaces of polynomial splines of order $m\ge r+1$ and of deficiency 1 with nodes at the points $2k\pi/n$ and $2k\pi/n+h$, $n\in\mathbb N$, $k\in\mathbb Z$, $h\in(0,2\pi/n)$. It is shown that these subspaces are extremal for the Kolmogorov widths of the corresponding functional classes.
Keywords: best approximation, differentiable periodic function, polynomial spline, Kolmogorov width, modulus of continuity, extremal subspace, Jackson-type inequality, the space $L_1$, Sobolev class $W_p^r$, the space $L_p$, Orlicz space.
@article{MZM_2010_87_5_a2,
     author = {V. F. Babenko and N. V. Parfinovich},
     title = {On the {Exact} {Values} of the {Best} {Approximations} of {Classes} of {Differentiable} {Periodic} {Functions} by {Splines}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--683},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/}
}
TY  - JOUR
AU  - V. F. Babenko
AU  - N. V. Parfinovich
TI  - On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines
JO  - Matematičeskie zametki
PY  - 2010
SP  - 669
EP  - 683
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/
LA  - ru
ID  - MZM_2010_87_5_a2
ER  - 
%0 Journal Article
%A V. F. Babenko
%A N. V. Parfinovich
%T On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines
%J Matematičeskie zametki
%D 2010
%P 669-683
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/
%G ru
%F MZM_2010_87_5_a2
V. F. Babenko; N. V. Parfinovich. On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 669-683. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/