On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 669-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the exact values of the best $L_1$-approximations of classes $W^rF$, $r\in\mathbb N$, of periodic functions whose $r$th derivative belongs to a given rearrangement-invariant set $F$, as well as of classes $W^rH^\omega$ of periodic functions whose $r$th derivative has a given convex (upward) majorant $\omega(t)$ of the modulus of continuity, by subspaces of polynomial splines of order $m\ge r+1$ and of deficiency 1 with nodes at the points $2k\pi/n$ and $2k\pi/n+h$, $n\in\mathbb N$, $k\in\mathbb Z$, $h\in(0,2\pi/n)$. It is shown that these subspaces are extremal for the Kolmogorov widths of the corresponding functional classes.
Keywords: best approximation, differentiable periodic function, polynomial spline, Kolmogorov width, modulus of continuity, extremal subspace, Jackson-type inequality, the space $L_1$, Sobolev class $W_p^r$, the space $L_p$, Orlicz space.
@article{MZM_2010_87_5_a2,
     author = {V. F. Babenko and N. V. Parfinovich},
     title = {On the {Exact} {Values} of the {Best} {Approximations} of {Classes} of {Differentiable} {Periodic} {Functions} by {Splines}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--683},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/}
}
TY  - JOUR
AU  - V. F. Babenko
AU  - N. V. Parfinovich
TI  - On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines
JO  - Matematičeskie zametki
PY  - 2010
SP  - 669
EP  - 683
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/
LA  - ru
ID  - MZM_2010_87_5_a2
ER  - 
%0 Journal Article
%A V. F. Babenko
%A N. V. Parfinovich
%T On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines
%J Matematičeskie zametki
%D 2010
%P 669-683
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/
%G ru
%F MZM_2010_87_5_a2
V. F. Babenko; N. V. Parfinovich. On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 669-683. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a2/

[1] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl

[2] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[3] N. P. Korneichuk, A. A. Ligun, V. G. Doronin, Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982 | MR | Zbl

[4] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR | Zbl

[5] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[6] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[7] V. F. Babenko, “Approximations, widths and optimal quadrature formulae for classes of periodic functions with rearrangement invariant sets of derivatives”, Anal. Math., 13:4 (1987), 281–306 | DOI | MR | Zbl

[8] V. F. Babenko, N. V. Parfinovich, “Tochnye znacheniya nailuchshikh priblizhenii klassov periodicheskikh funktsii splainami defekta 2”, Matem. zametki, 85:4 (2009), 538–551 | MR | Zbl

[9] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. matem., 10:3 (1946), 207–256 | MR | Zbl

[10] L. V. Taikov, “O priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Priblizhenie funktsii v srednem, Sbornik rabot, Tr. MIAN SSSR, 88, Nauka, M., 1967, 61–70 | MR | Zbl

[11] S. P. Turovets, “O nailuchshem priblizhenii v srednem differentsiruemykh funktsii”, Dokl. AN USSR. Ser. A, 1968, no. 5, 417–421 | MR | Zbl

[12] A. A. Ligun, “Inequalities for upper bounds of functions”, Anal. Math., 2:1 (1976), 11–40 | DOI | MR | Zbl

[13] Yu. I. Makovoz, “Poperechniki nekotorykh funktsionalnykh klassov v prostranstve $L$”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1969, no. 4, 19–28 | MR | Zbl

[14] Yu. N. Subbotin, “Poperechnik klassa $W^rL$ v $L(0,2\pi)$ i priblizhenie splain-funktsiyami”, Matem. zametki, 7:1 (1970), 43–52 | MR | Zbl

[15] Yu. N. Subbotin, “Priblizhenie splain-funktsiyami i otsenki poperechnikov”, Priblizhenie periodicheskikh funktsii, Sbornik rabot, Tr. MIAN, 109, Nauka, M., 1971, 35–60 | MR | Zbl

[16] Yu. I. Makovoz, “Ob odnom prieme otsenki snizu poperechnikov mnozhestv v banakhovykh prostranstvakh”, Matem. sb., 87:1 (1972), 136–142 | MR | Zbl

[17] A. A. Ligun, “O poperechnikakh nekotorykh klassov differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 27:1 (1980), 61–75 | MR | Zbl

[18] Yu. I. Makovoz, “Poperechniki sobolevskikh klassov i splainy, naimenee uklonyayuschiesya ot nulya”, Matem. zametki, 26:5 (1979), 805–812 | MR | Zbl

[19] A. Pinkus, “On $n$-widths of periodic functions”, J. Analyse Math., 35 (1979), 209–235 | DOI | MR | Zbl

[20] N. P. Korneichuk, “Verkhnie grani nailuchshikh priblizhenii na klassakh differentsiruemykh periodicheskikh funktsii v metrikakh $C$ i $L$”, Dokl. AN SSSR, 190:2 (1970), 269–271 | MR | Zbl

[21] N. P. Korneichuk, “Ekstremalnye znacheniya funktsionalov i nailuchshee priblizhenie na klassakh periodicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 35:1 (1971), 93–124 | MR | Zbl

[22] N. P. Korneichuk, “Nailuchshee priblizhenie splainami na klassakh periodicheskikh funktsii v metrike $L$”, Matem. zametki, 20:5 (1976), 655–664 | MR | Zbl

[23] V. P. Motornyi, V. I. Ruban, “Poperechniki nekotorykh klassov differentsiruemykh periodicheskikh funktsii v prostranstve $L$”, Matem. zametki, 17:4 (1975), 531–543 | MR | Zbl

[24] V. I. Ruban, “Poperechniki mnozhestv v prostranstvakh periodicheskikh funktsii”, Dokl AN SSSR, 225:1 (1980), 34–35 | MR | Zbl

[25] A. A. Ligun, V. E. Kapustyan, Yu. I. Volkov, Spetsialnye voprosy teorii priblizhenii i optimalnogo upravleniya raspredelennymi sistemami, Vyscha shkola, Kiev, 1990

[26] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR | Zbl