On Certain Hyperbolic Sets
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 650-668.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two invariant sets $F$ of certain diffeomorphisms $S$ that were described by A. Fathi, S. Crovisier, and T. Fisher as examples of hyperbolic sets with the property (unexpected at that time) that, in some neighborhood of such an $F$, there is no locally maximal set containing $F$ are considered. It is proved that this property, although referring to the behavior of the orbits of $S$ near $F$, is ultimately determined in the examples mentioned above by a combination of a certain explicitly stated intrinsic property of the action of $S$ on $F$ with the hyperbolicity of $F$. (This means that if a hyperbolic set $F'$ for a diffeomorphism $S'$ is equivariantly homeomorphic to a Fathi–Crovisier or a Fisher set, then $F'$ has a neighborhood in which $S'$ has no locally maximal set containing $F'$.)
Keywords: non–locally premaximal hyperbolic set, non–locally premaximal hyperbolic set, hyperbolic set, locally maximal (premaximal) invariant set, metric space.
@article{MZM_2010_87_5_a1,
     author = {D. V. Anosov},
     title = {On {Certain} {Hyperbolic} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {650--668},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a1/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On Certain Hyperbolic Sets
JO  - Matematičeskie zametki
PY  - 2010
SP  - 650
EP  - 668
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a1/
LA  - ru
ID  - MZM_2010_87_5_a1
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On Certain Hyperbolic Sets
%J Matematičeskie zametki
%D 2010
%P 650-668
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a1/
%G ru
%F MZM_2010_87_5_a1
D. V. Anosov. On Certain Hyperbolic Sets. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 650-668. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a1/

[1] S. Crovisier, “Une remarque sur les ensembles hyperboliques localement maximaux”, C. R. Math. Acad. Sci. Paris, 334:5 (2002), 401–404 | MR | Zbl

[2] T. Fisher, “Hyperbolic sets that are not locally maximal”, Ergodic Theory Dynam. Systems, 26:5 (2006), 1491–1509 | DOI | MR | Zbl

[3] D. V. Anosov, “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Trudy V Mezhdunarodnoi konferentsii po nelineinym kolebaniyam, v. 2, Kachestvennye metody, Izd-vo In-ta matem. AN USSR, Kiev, 1970, 39–45 | Zbl

[4] M. Shub, “Stabilité globale des systèmes dynamiques”, Astérisque, 56, Soc. Math. France, Paris, 1978 | MR | Zbl

[5] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[6] R. Bouen, Metody simvolicheskoi dinamiki, Matematika. Novoe v zarubezhnoi nauke, 13, Mir, M., 1979