Peierls Substitution and the Maslov Operator Method
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 554-571.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a periodic Schrödinger operator in a constant magnetic field with vector potential $A(x)$. A version of adiabatic approximation for quantum mechanical equations with rapidly varying electric potentials and weak magnetic fields is the Peierls substitution which, in appropriate dimensionless variables, permits writing the pseudodifferential equation for the new auxiliary function: $\mathscr E^{\nu}(-i\mu\partial_x,x)\phi=E\phi$, where $\mathscr E^{\nu}$ is the corresponding energy level of some auxiliary Schrödinger operator, assumed to be nondegenerate, and $\mu$ is a small parameter. In the present paper, we use V. P. Maslov's operator method to show that, in the case of a constant magnetic field, such a reduction in any perturbation order leads to the equation $\mathscr{E}^{\nu}(\widehat P,\mu)\phi=E\phi$ with the operator $\mathscr{E}^{\nu}(\widehat P,\mu)$ represented as a function depending only on the operators of kinetic momenta $\widehat P_j=-i\mu\partial_{x_j}+A_j(x)$.
Keywords: Peierls substitution, pseudodifferential equation, kinetic momentum, adiabatic approximation, periodic Schrödinger operator, stationary phase method.
@article{MZM_2010_87_4_a7,
     author = {V. V. Grushin and S. Yu. Dobrokhotov},
     title = {Peierls {Substitution} and the {Maslov} {Operator} {Method}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {554--571},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a7/}
}
TY  - JOUR
AU  - V. V. Grushin
AU  - S. Yu. Dobrokhotov
TI  - Peierls Substitution and the Maslov Operator Method
JO  - Matematičeskie zametki
PY  - 2010
SP  - 554
EP  - 571
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a7/
LA  - ru
ID  - MZM_2010_87_4_a7
ER  - 
%0 Journal Article
%A V. V. Grushin
%A S. Yu. Dobrokhotov
%T Peierls Substitution and the Maslov Operator Method
%J Matematičeskie zametki
%D 2010
%P 554-571
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a7/
%G ru
%F MZM_2010_87_4_a7
V. V. Grushin; S. Yu. Dobrokhotov. Peierls Substitution and the Maslov Operator Method. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 554-571. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a7/

[1] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 9, Statisticheskaya fizika, ch. 2, Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[2] G. Panati, H. Spohn, S. Teufel, “Effective dynamics for Bloch electrons: Peierls substitution and beyond”, Comm. Math. Phys., 242:3 (2003), 547–578 | DOI | MR | Zbl

[3] E. I. Blount, “Bloch electrons in a magnetic field”, Phys. Rev. (2), 126:5 (1962), 1636–1653 | DOI | MR | Zbl

[4] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[5] L. V. Berlyand, S. Yu. Dobrokhotov, ““Operatornoe razdelenie peremennykh” v zadache o korotkovolnovoi asimptotike dlya differentsialnykh uravnenii s bystromenyayuschimisya koeffitsientami”, Dokl. AN SSSR, 296:1 (1987), 80–84 | MR | Zbl

[6] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1–4 (2006), 183–237 | DOI | MR | Zbl

[7] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanostrukturakh”, UFN, 175:9 (2005), 1004–1010

[8] M. V. Karasëv, V. P. Maslov, “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II. Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 13, VINITI, M., 1979, 145–267 | MR | Zbl

[9] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl

[10] S. P. Novikov, A. Ya. Maltsev, “Topologicheskie yavleniya v normalnykh metallakh”, UFN, 168:3 (1998), 249–258

[11] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl

[12] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl

[13] S. Albeverio, Z. Brzeźniak, “Finite dimensional approximation approach to oscillatory integrals and stationary phase in infinite dimensions”, J. Funct. Anal., 113:1 (1993), 177–244 | DOI | MR | Zbl