Finite Groups and Families of Modular Forms Associated with Them
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 528-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a correspondence between finite groups and $q$-series which, under specialization, are Fourier expansions of modular forms is studied. The categories thus arising are investigated. The problem of describing groups to which $q$-series with multiplicative coefficients correspond is considered. Subgroups of this kind are contained in any group. The notion of modular analog of the genetic code of a group is introduced and studied.
Keywords: finite group, modular form, $q$-series, Hecke operator, Dedekind $\eta$-function, group representation, Sylow subgroup.
Mots-clés : multiplicative coefficient, Fourier expansion
@article{MZM_2010_87_4_a5,
     author = {G. V. Voskresenskaya},
     title = {Finite {Groups} and {Families} of {Modular} {Forms} {Associated} with {Them}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {528--541},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a5/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Finite Groups and Families of Modular Forms Associated with Them
JO  - Matematičeskie zametki
PY  - 2010
SP  - 528
EP  - 541
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a5/
LA  - ru
ID  - MZM_2010_87_4_a5
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Finite Groups and Families of Modular Forms Associated with Them
%J Matematičeskie zametki
%D 2010
%P 528-541
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a5/
%G ru
%F MZM_2010_87_4_a5
G. V. Voskresenskaya. Finite Groups and Families of Modular Forms Associated with Them. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 528-541. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a5/

[1] M. Kholl, Teoriya grupp, IL, M., 1962 | MR | Zbl

[2] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and $q$-Series, CBMS Regional Conf. Ser. in Math., 102, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[3] G. V. Voskresenskaya, “One special class of modular forms and group representations”, J. Théor. Nombres Bordeaux, 11:1 (1999), 247–262 | MR | Zbl

[4] D. Dummit, H. Kisilevskii, J. McKay, “Multiplicative products of $\eta$-functions”, Finite Groups – Coming of Age (Montreal, Que., 1982), Contemp. Math., 45, Amer. Math. Soc., Providence, RI, 1985, 89–98 | MR | Zbl

[5] G. Mason, “$M_{24}$ and certain automorphic forms”, Finite Groups – Coming of Age (Montreal, Que., 1982), Contemp. Math., 45, Amer. Math. Soc., Providence, RI, 1985, 223–244 | MR | Zbl

[6] G. Mason, “Finite groups and Hecke operators”, Math. Ann., 283:3 (1989), 381–409 | DOI | MR | Zbl

[7] G. V. Voskresenskaya, “Metatsiklicheskie gruppy i modulyarnye formy”, Matem. zametki, 67:2 (2000), 163–173 | MR | Zbl

[8] G. V. Voskresenskaya, “Abelevy gruppy i modulyarnye formy”, Vestn. Samarskogo gos. un-ta. Estestvennonauchn. ser., 2003, no. 2, 21–35 | MR | Zbl

[9] G. V. Voskresenskaya, “Multiplikativnye proizvedeniya eta-funktsii Dedekinda i predstavleniya grupp”, Matem. zametki, 73:4 (2003), 511–526 | MR | Zbl

[10] G. V. Voskresenskaya, “O probleme klassifikatsii konechnykh grupp, assotsiirovannykh s multiplikativnymi $\eta$-proizvedeniyami”, Fundament. i prikl. matem., 10:4 (2004), 43–64 | MR | Zbl

[11] G. V. Voskresenskaya, “Multiplicative Dedekind $\eta$-functions and representations of finite groups”, J. Théor. Nombres Bordeaux, 17:1 (2005), 359–380 | MR | Zbl