An Example of Nonexistence of a Steiner Point in a Banach Space
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 514-518
Cet article a éte moissonné depuis la source Math-Net.Ru
For each $n=3,4,\dots$, we construct an example of a Banach space $X$ and elements $x_1,\dots,x_n$ in this space such that $X$ does not have any element with the minimal sum of distances to the elements $x_k$.
Keywords:
Steiner point, Banach space, Hilbert space, reflexive space.
@article{MZM_2010_87_4_a3,
author = {P. A. Borodin},
title = {An {Example} of {Nonexistence} of a {Steiner} {Point} in a {Banach} {Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {514--518},
year = {2010},
volume = {87},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a3/}
}
P. A. Borodin. An Example of Nonexistence of a Steiner Point in a Banach Space. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 514-518. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a3/
[1] R. Kurant, G. Robbins, Chto takoe matematika? Elementarnyi ocherk idei i metodov, RKhD, M., Izhevsk, 2001 | MR | Zbl
[2] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovremennaya matematika, IKI, M, Izhevsk, 2003
[3] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl
[4] N. Danford, Dzh. Shvarts, Lineinye operatory, v. 1, Obschaya teoriya, URSS, M., 2004 | MR | Zbl