Periodic Ground States of a Hamiltonian on a Cayley Tree
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 624-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Cayley tree, Rozikov model, Hamiltonian, ground state, generalized Kronecker delta, Gibbs measure, free product of cyclic groups.
@article{MZM_2010_87_4_a13,
     author = {G. I. Botirov},
     title = {Periodic {Ground} {States} of a {Hamiltonian} on a {Cayley} {Tree}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {624--627},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a13/}
}
TY  - JOUR
AU  - G. I. Botirov
TI  - Periodic Ground States of a Hamiltonian on a Cayley Tree
JO  - Matematičeskie zametki
PY  - 2010
SP  - 624
EP  - 627
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a13/
LA  - ru
ID  - MZM_2010_87_4_a13
ER  - 
%0 Journal Article
%A G. I. Botirov
%T Periodic Ground States of a Hamiltonian on a Cayley Tree
%J Matematičeskie zametki
%D 2010
%P 624-627
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a13/
%G ru
%F MZM_2010_87_4_a13
G. I. Botirov. Periodic Ground States of a Hamiltonian on a Cayley Tree. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 624-627. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a13/

[1] N. N. Ganikhodzhaev, S. R. Azizova, Dokl. AN UzSSR, 1990, no. 4, 3–5 | MR | Zbl

[2] U. A. Rozikov, J. Stat. Phys., 130:4 (2008), 801–813 | DOI | MR | Zbl

[3] R. A. Minlos, Introduction to Mathematical Statistical Physics, Univ. Lecture Ser., 19, Amer. Math. Soc., Providece, RI, 2000 | MR | Zbl

[4] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | Zbl

[5] G. I. Botirov, U. A. Rozikov, TMF, 153:1 (2007), 86–97 | MR | Zbl

[6] U. A. Rozikov, J. Stat. Phys., 122:2 (2006), 217–235 | DOI | MR | Zbl

[7] U. A. Rozikov, TMF, 112:1 (1997), 170–175 | MR | Zbl

[8] U. A. Rozikov, Ground Subgroups, arXiv: math.GR/0904.1850