Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 616-623

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain exact values of different $n$-widths for classes of differentiable periodic functions in the space $L_{2}[0,2\pi]$ satisfying the constraint $$ \biggl(\int_{0}^{h}\omega_{m}^{p}(f^{(r)};t)\,dt\biggr)^{1/p}\le\Phi(h), $$ where $0$, $1/r$, $r\in\mathbb{N}$, and $\omega_{m}(f^{(r)};t)$ is the modulus of continuity of $m$th order of the derivative $f^{(r)}(x)\in L_{2}[0,2\pi]$.
Keywords: differentiable periodic function, width in the sense of Bernstein, Kolmogorov, Gelfand, the space $L_{2}[0,2\pi]$, trigonometric polynomial, Fourier series, modulus of continuity, linear operator.
@article{MZM_2010_87_4_a12,
     author = {M. Sh. Shabozov},
     title = {Widths of {Classes} of {Periodic} {Differentiable} {Functions} in the {Space~}$L_{2}[0,2\pi]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {616--623},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
TI  - Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 616
EP  - 623
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/
LA  - ru
ID  - MZM_2010_87_4_a12
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%T Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$
%J Matematičeskie zametki
%D 2010
%P 616-623
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/
%G ru
%F MZM_2010_87_4_a12
M. Sh. Shabozov. Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 616-623. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/