Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 616-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain exact values of different $n$-widths for classes of differentiable periodic functions in the space $L_{2}[0,2\pi]$ satisfying the constraint $$ \biggl(\int_{0}^{h}\omega_{m}^{p}(f^{(r)};t)\,dt\biggr)^{1/p}\le\Phi(h), $$ where $0$, $1/r$, $r\in\mathbb{N}$, and $\omega_{m}(f^{(r)};t)$ is the modulus of continuity of $m$th order of the derivative $f^{(r)}(x)\in L_{2}[0,2\pi]$.
Keywords: differentiable periodic function, width in the sense of Bernstein, Kolmogorov, Gelfand, the space $L_{2}[0,2\pi]$, trigonometric polynomial, Fourier series, modulus of continuity, linear operator.
@article{MZM_2010_87_4_a12,
     author = {M. Sh. Shabozov},
     title = {Widths of {Classes} of {Periodic} {Differentiable} {Functions} in the {Space~}$L_{2}[0,2\pi]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {616--623},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
TI  - Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 616
EP  - 623
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/
LA  - ru
ID  - MZM_2010_87_4_a12
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%T Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$
%J Matematičeskie zametki
%D 2010
%P 616-623
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/
%G ru
%F MZM_2010_87_4_a12
M. Sh. Shabozov. Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 616-623. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a12/

[1] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[2] N. I. Chernykh, “O neravenstvakh Dzheksona v $L_{2}$”, Priblizhenie funktsii v srednem, Sbornik rabot, Tr. MIAN SSSR, 88, Nauka, M., 1967, 71–74 | MR | Zbl

[3] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[4] L. V. Taikov, “Nailuchshie priblizheniya differentsiruemykh funktsii v metrike prostranstva $L_2$”, Matem. zametki, 22:4 (1977), 535–542 | MR | Zbl

[5] L. V. Taikov, “Strukturnye i konstruktivnye kharakteristiki funktsii iz $L_2$”, Matem. zametki, 25:2 (1979), 217–223 | MR | Zbl

[6] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[7] V. V. Shalaev, “O poperechnikakh v $L_{2}$ klassov differentsiruemykh funktsii, opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. matem. zhurn., 43:1 (1991), 125–129 | MR | Zbl

[8] M. G. Esmaganbetov, “Poperechniki klassov iz $L_2[0,2\pi]$ i minimizatsiya tochnykh konstant v neravenstvakh tipa Dzheksona”, Matem. zametki, 65:6 (1999), 816–820 | MR | Zbl

[9] S. B. Vakarchuk, “O nailuchshikh polinomialnykh priblizheniyakh v $L_2$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnykh znacheniyakh ikh $n$-poperechnikov”, Matem. zametki, 70:3 (2001), 334–345 | MR | Zbl

[10] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Matem. zametki, 78:5 (2005), 792–796 | MR | Zbl

[11] S. B. Vakarchuk, “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Matem. zametki, 80:1 (2006), 11–19 | MR | Zbl

[12] S. N. Vasilev, “Tochnoe neravenstvo Dzheksona–Stechkina v $L_{2}$ s modulem nepreryvnosti, porozhdennym proizvolnym konechnoraznostnym operatorom s postoyannymi koeffitsientami”, Dokl. RAN, 385:1 (2002), 11–14 | MR | Zbl

[13] S. B. Vakarchuk, A. N. Schitov, “Nailuchshie polinomialnye priblizheniya v $L_{2}$ i poperechniki nekotorykh klassov funktsii”, Ukr. matem. zhurn., 56:11 (2004), 1458–1466 | MR | Zbl

[14] M. Sh. Shabozov, O. Sh. Shabozov, “O poperechnikakh klassov periodicheskikh funktsii v prostranstve $L_{2}[0,2\pi]$”, Dokl. AN Respubliki Tadzhikistan, 49:2 (2006), 111–116

[15] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[16] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl