Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_4_a11, author = {D. V. Khristoforov}, title = {On the {Phenomenon} of {Spurious} {Interpolation} of {Elliptic} {Functions} by {Diagonal} {Pad\'e} {Approximants}}, journal = {Matemati\v{c}eskie zametki}, pages = {604--615}, publisher = {mathdoc}, volume = {87}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a11/} }
TY - JOUR AU - D. V. Khristoforov TI - On the Phenomenon of Spurious Interpolation of Elliptic Functions by Diagonal Pad\'e Approximants JO - Matematičeskie zametki PY - 2010 SP - 604 EP - 615 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a11/ LA - ru ID - MZM_2010_87_4_a11 ER -
D. V. Khristoforov. On the Phenomenon of Spurious Interpolation of Elliptic Functions by Diagonal Pad\'e Approximants. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 604-615. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a11/
[1] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[2] H. Stahl, “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), 1996, Special issue, 121–193 | MR | Zbl
[3] H. Stahl, “Spurious poles in Padé approximation”, J. Comput. Appl. Math., 99:1–2 (1998), 511–527 | DOI | MR | Zbl
[4] S. P. Suetin, “O skhodimosti chebyshevskikh nepreryvnykh drobei dlya ellipticheskikh funktsii”, Matem. sb., 194:12 (2003), 63–92 | MR | Zbl
[5] S. P. Suetin, “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl
[6] S. P. Suetin, “Ob interpolyatsionnykh svoistvakh diagonalnykh approksimatsii Pade ellipticheskikh funktsii”, UMN, 59:4 (2004), 201–202 | MR | Zbl
[7] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade. Ch. 1. Osnovy teorii. Ch. 2. Obobscheniya i prilozheniya, Mir, M., 1986 | MR | Zbl
[8] J. Gammel, W. Marshall, L. Morgan, “An application of Padé approximants to Heisenberg ferromagnetism and antiferromagnetism”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 275:1361 (1963), 257–270 | DOI
[9] V. A. Ilina, P. K. Silaev, Chislennye metody dlya fizikov-teoretikov, Ch. 1, IKI, M, Izhevsk, 2003
[10] S. Dumas, Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zürich, 1908, 59 pp. | Zbl
[11] V. I. Buslaev, “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl
[12] D. V. Khristoforov, “O skhodimosti diagonalnykh approksimatsii Pade dlya ellipticheskikh funktsii”, Matem. sb., 200:6 (2009), 143–160 | MR | Zbl
[13] E. I. Zverovich, “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl
[14] O. Forster, Rimanovy poverkhnosti, Mir, M., 1980 | MR | Zbl