On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 594-603
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a fork-convex family $\mathbb W$ of nonnegative stochastic processes has an equivalent supermartingale density if and only if the set $H$ of nonnegative random variables majorized by the values of elements of $\mathbb W$ at fixed instants of time is bounded in probability. A securities market model with arbitrarily many main risky assets, specified by the set $\mathbb W(\mathbb S)$ of nonnegative stochastic integrals with respect to finite collections of semimartingales from an arbitrary indexed family $\mathbb S$, satisfies the assumptions of this theorem.
Keywords:
stochastic process, fork-convex family, supermartingale, semimartingale, securities market, probability space, convergence in probability, stochastic integral.
@article{MZM_2010_87_4_a10,
author = {D. B. Rokhlin},
title = {On the {Existence} of an {Equivalent} {Supermartingale} {Density} for a {Fork-Convex} {Family} of {Stochastic} {Processes}},
journal = {Matemati\v{c}eskie zametki},
pages = {594--603},
publisher = {mathdoc},
volume = {87},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a10/}
}
TY - JOUR AU - D. B. Rokhlin TI - On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes JO - Matematičeskie zametki PY - 2010 SP - 594 EP - 603 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a10/ LA - ru ID - MZM_2010_87_4_a10 ER -
D. B. Rokhlin. On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 594-603. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a10/