Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_4_a10, author = {D. B. Rokhlin}, title = {On the {Existence} of an {Equivalent} {Supermartingale} {Density} for a {Fork-Convex} {Family} of {Stochastic} {Processes}}, journal = {Matemati\v{c}eskie zametki}, pages = {594--603}, publisher = {mathdoc}, volume = {87}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a10/} }
TY - JOUR AU - D. B. Rokhlin TI - On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes JO - Matematičeskie zametki PY - 2010 SP - 594 EP - 603 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a10/ LA - ru ID - MZM_2010_87_4_a10 ER -
D. B. Rokhlin. On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 594-603. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a10/
[1] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 2003 | MR | Zbl
[2] G. Žitković, “A filtered version of the bipolar theorem of Brannath and Schachermayer”, J. Theoret. Probab., 15:1 (2002), 41–61 | DOI | MR | Zbl
[3] D. Kramkov, W. Schachermayer, “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl
[4] Yu. Kabanov, C. Stricker, “Remarks on the true no-arbitrage property”, Séminaire de Probabilités XXXVIII, Lecture Notes in Math., 1857, Springer-Verlag, Berlin, 2005, 186–194 | MR | Zbl
[5] M. M. Christensen, K. Larsen, “No arbitrage and the growth optimal portfolio”, Stoch. Anal. Appl., 25:1 (2007), 255–280 | DOI | MR | Zbl
[6] I. Karatzas, C. Kardaras, “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl
[7] F. Delbaen, W. Schachermayer, The Mathematics of Arbitrage, Springer Finance, Springer-Verlag, Berlin, 2006 | MR | Zbl
[8] Yu. M. Kabanov, D. O. Kramkov, “Bolshie finansovye rynki: asimptoticheskii arbitrazh i kontigualnost”, TVP, 39:1 (1994), 222–229 | MR | Zbl
[9] Yu. M. Kabanov, D. O. Kramkov, “Asymptotic arbitrage in large financial markets”, Finance Stoch., 2:2 (1998), 143–172 | DOI | MR | Zbl
[10] M. De Donno, P. Guasoni, M. Pratelli, “Super-replication and utility maximization in large financial markets”, Stochastic Process. Appl., 115:12 (2005), 2006–2022 | DOI | MR | Zbl
[11] F. Delbaen, W. Schachermayer, “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[12] F. Delbaen, W. Schachermayer, “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl
[13] E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance, Springer Finance, Springer-Verlag, Berlin, 2006 | MR | Zbl
[14] C. Zălinescu, Convex Analysis in General Vector Spaces, World Sci. Publ., Singapore, 2002 | MR | Zbl
[15] M. Pratelli, “A minimax theorem without compactness hypothesis”, Mediterr. J. Math., 2:1 (2005), 103–112 | DOI | MR | Zbl
[16] D. Becherer, “The numéraire portfolio for unbounded semimartingales”, Finance Stoch., 5:3 (2001), 327–341 | DOI | MR | Zbl
[17] O. Kallenberg, Foundations of Modern Probability, Probab. Appl. (N. Y.), Springer-Verlag, New York, NY, 1997 | MR | Zbl
[18] I. Karatzas, G. Žitković, “Optimal consumption from investment and random endowment in incomplete semimartingale markets”, Ann. Probab., 31:4 (2003), 1821–1858 | DOI | MR | Zbl