On the Convergence in Mean of Trigonometric Fourier Series
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 492-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the sharpness of Zygmund's theorem, which asserts that if a $2\pi$-periodic function $f$ belongs to $L\ln^+ L$, then its Fourier series is convergent in mean.
Keywords: trigonometric Fourier series, $2\pi$-periodic function, convergence in mean, Zygmund's theorem, Dirichlet kernel.
Mots-clés : Abel transformation
@article{MZM_2010_87_4_a1,
     author = {A. S. Belov},
     title = {On the {Convergence} in {Mean} of {Trigonometric} {Fourier} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {492--501},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a1/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On the Convergence in Mean of Trigonometric Fourier Series
JO  - Matematičeskie zametki
PY  - 2010
SP  - 492
EP  - 501
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a1/
LA  - ru
ID  - MZM_2010_87_4_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%T On the Convergence in Mean of Trigonometric Fourier Series
%J Matematičeskie zametki
%D 2010
%P 492-501
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a1/
%G ru
%F MZM_2010_87_4_a1
A. S. Belov. On the Convergence in Mean of Trigonometric Fourier Series. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 492-501. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a1/

[1] A. Zygmund, “Sur les fonctions conjuguées”, Fund. Math., 13 (1929), 284–303 | Zbl

[2] A. S. Belov, “O trigonometricheskikh ryadakh s neogranichennymi snizu chastnymi summami”, Vestn. Ivanovsk. gos. un-ta. Ser. Biolog. Khim. Fiz. Matem., 2002, no. 3, 110–117

[3] A. Zigmund, Trigonometricheskie ryady, v. 1, Mir, 1965 | MR | Zbl

[4] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR