On the Convergence in Mean of Trigonometric Fourier Series
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 492-501
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the sharpness of Zygmund's theorem, which asserts that if a $2\pi$-periodic function $f$ belongs to $L\ln^+ L$, then its Fourier series is convergent in mean.
Keywords:
trigonometric Fourier series, $2\pi$-periodic function, convergence in mean, Zygmund's theorem, Dirichlet kernel.
Mots-clés : Abel transformation
Mots-clés : Abel transformation
@article{MZM_2010_87_4_a1,
author = {A. S. Belov},
title = {On the {Convergence} in {Mean} of {Trigonometric} {Fourier} {Series}},
journal = {Matemati\v{c}eskie zametki},
pages = {492--501},
year = {2010},
volume = {87},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a1/}
}
A. S. Belov. On the Convergence in Mean of Trigonometric Fourier Series. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 492-501. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a1/
[1] A. Zygmund, “Sur les fonctions conjuguées”, Fund. Math., 13 (1929), 284–303 | Zbl
[2] A. S. Belov, “O trigonometricheskikh ryadakh s neogranichennymi snizu chastnymi summami”, Vestn. Ivanovsk. gos. un-ta. Ser. Biolog. Khim. Fiz. Matem., 2002, no. 3, 110–117
[3] A. Zigmund, Trigonometricheskie ryady, v. 1, Mir, 1965 | MR | Zbl
[4] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR