Abelian Groups as $\mathrm{UA}$-Modules over the Ring~$\mathbb Z$
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 412-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V$ be a module over a ring $R$. The module $V$ is called a unique addition module (a $\mathrm{UA}$-module) if there is no new addition on the set $V$ without changing the action of $R$ on $V$. In the paper, the $\mathrm{UA}$-modules over the ring $\mathbb Z$ are found.
Keywords: unitary module over an associative ring, mixed Abelian group, strongly servant subgroup, reduced group.
Mots-clés : unique addition module, divisible group
@article{MZM_2010_87_3_a8,
     author = {O. V. Ljubimtsev and D. S. Chistyakov},
     title = {Abelian {Groups} as $\mathrm{UA}${-Modules} over the {Ring~}$\mathbb Z$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {412--416},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a8/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - D. S. Chistyakov
TI  - Abelian Groups as $\mathrm{UA}$-Modules over the Ring~$\mathbb Z$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 412
EP  - 416
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a8/
LA  - ru
ID  - MZM_2010_87_3_a8
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A D. S. Chistyakov
%T Abelian Groups as $\mathrm{UA}$-Modules over the Ring~$\mathbb Z$
%J Matematičeskie zametki
%D 2010
%P 412-416
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a8/
%G ru
%F MZM_2010_87_3_a8
O. V. Ljubimtsev; D. S. Chistyakov. Abelian Groups as $\mathrm{UA}$-Modules over the Ring~$\mathbb Z$. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 412-416. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a8/

[1] B. van der Merwe, “Unique addition modules”, Comm. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl

[2] J. Hausen, J. A. Johnson, “Centralizer near-rings that are rings”, J. Austral. Math. Soc. Ser. A, 59:2 (1995), 173–183 | DOI | MR | Zbl

[3] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 ; Бесконечные абелевы группы, Т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[4] O. V. Lyubimtsev, “Separabelnye abelevy gruppy bez krucheniya s UA-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[5] O. V. Lyubimtsev, “Periodicheskie abelevy gruppy s $UA$-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | MR | Zbl