Abelian Groups as $\mathrm{UA}$-Modules over the Ring $\mathbb Z$
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 412-416
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $V$ be a module over a ring $R$. The module $V$ is called a unique addition module (a $\mathrm{UA}$-module) if there is no new addition on the set $V$ without changing the action of $R$ on $V$. In the paper, the $\mathrm{UA}$-modules over the ring $\mathbb Z$ are found.
Keywords:
unitary module over an associative ring, mixed Abelian group, strongly servant subgroup, reduced group.
Mots-clés : unique addition module, divisible group
Mots-clés : unique addition module, divisible group
@article{MZM_2010_87_3_a8,
author = {O. V. Ljubimtsev and D. S. Chistyakov},
title = {Abelian {Groups} as $\mathrm{UA}${-Modules} over the {Ring~}$\mathbb Z$},
journal = {Matemati\v{c}eskie zametki},
pages = {412--416},
year = {2010},
volume = {87},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a8/}
}
O. V. Ljubimtsev; D. S. Chistyakov. Abelian Groups as $\mathrm{UA}$-Modules over the Ring $\mathbb Z$. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 412-416. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a8/
[1] B. van der Merwe, “Unique addition modules”, Comm. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl
[2] J. Hausen, J. A. Johnson, “Centralizer near-rings that are rings”, J. Austral. Math. Soc. Ser. A, 59:2 (1995), 173–183 | DOI | MR | Zbl
[3] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 ; Бесконечные абелевы группы, Т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl
[4] O. V. Lyubimtsev, “Separabelnye abelevy gruppy bez krucheniya s UA-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl
[5] O. V. Lyubimtsev, “Periodicheskie abelevy gruppy s $UA$-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | MR | Zbl