Tensor Approach to the Problem of Averaging Differential Equations with $\delta$-Correlated Random Coefficients
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 359-368
Voir la notice de l'article provenant de la source Math-Net.Ru
Linear ordinary differential equations with $\delta$-correlated random coefficients are considered. We introduce the notion of linearizing tensor and use this notion to construct an algorithm for deriving differential equations for higher-order statistical moments of the solution of arbitrary positive integer orders.
Keywords:
linear ordinary differential equations, statistical moments, linearizing tensor, random, random process, renewal interval, central limit theorem.
Mots-clés : random coefficients
Mots-clés : random coefficients
@article{MZM_2010_87_3_a3,
author = {D. A. Grachev},
title = {Tensor {Approach} to the {Problem} of {Averaging} {Differential} {Equations} with $\delta${-Correlated} {Random} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {359--368},
publisher = {mathdoc},
volume = {87},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a3/}
}
TY - JOUR AU - D. A. Grachev TI - Tensor Approach to the Problem of Averaging Differential Equations with $\delta$-Correlated Random Coefficients JO - Matematičeskie zametki PY - 2010 SP - 359 EP - 368 VL - 87 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a3/ LA - ru ID - MZM_2010_87_3_a3 ER -
D. A. Grachev. Tensor Approach to the Problem of Averaging Differential Equations with $\delta$-Correlated Random Coefficients. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a3/