Tensor Approach to the Problem of Averaging Differential Equations with $\delta$-Correlated Random Coefficients
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 359-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear ordinary differential equations with $\delta$-correlated random coefficients are considered. We introduce the notion of linearizing tensor and use this notion to construct an algorithm for deriving differential equations for higher-order statistical moments of the solution of arbitrary positive integer orders.
Keywords: linear ordinary differential equations, statistical moments, linearizing tensor, random, random process, renewal interval, central limit theorem.
Mots-clés : random coefficients
@article{MZM_2010_87_3_a3,
     author = {D. A. Grachev},
     title = {Tensor {Approach} to the {Problem} of {Averaging} {Differential} {Equations} with $\delta${-Correlated} {Random} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {359--368},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a3/}
}
TY  - JOUR
AU  - D. A. Grachev
TI  - Tensor Approach to the Problem of Averaging Differential Equations with $\delta$-Correlated Random Coefficients
JO  - Matematičeskie zametki
PY  - 2010
SP  - 359
EP  - 368
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a3/
LA  - ru
ID  - MZM_2010_87_3_a3
ER  - 
%0 Journal Article
%A D. A. Grachev
%T Tensor Approach to the Problem of Averaging Differential Equations with $\delta$-Correlated Random Coefficients
%J Matematičeskie zametki
%D 2010
%P 359-368
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a3/
%G ru
%F MZM_2010_87_3_a3
D. A. Grachev. Tensor Approach to the Problem of Averaging Differential Equations with $\delta$-Correlated Random Coefficients. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a3/

[1] Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, “Peremezhaemost v sluchainoi srede”, UFN, 152:1 (1987), 3–32 | MR

[2] Ya. B. Zel'dovich, A. A. Ruzmaikin, D. D. Sokolov, The Almightly Chance, World Sci., Singapore, 1991

[3] V. I. Tikhonov, “Vozdeistvie fluktuatsii na prosteishie parametricheskie sistemy”, Avtomatika i telemekhanika, 19:8 (1958), 717–723

[4] Dzh. Adomian, Stokhasticheskie sistemy, Mir, M., 1987 | MR | Zbl

[5] A. V. Fursikov, “Problema zamykaniya tsepochek momentnykh uravnenii, sootvetstvuyuschikh trekhmernoi sisteme uravnenii Nave–Stoksa v sluchae bolshikh chisel Reinoldsa”, Dokl. AN SSSR, 319:1 (1991), 83–87 | MR | Zbl

[6] A. V. Fursikov, “Momentnaya teoriya dlya uravnenii Nave–Stoksa so sluchainoi pravoi chastyu”, Izv. RAN. Ser. matem., 56:6 (1992), 1273–1315 | MR | Zbl

[7] V. E. Shapiro, V. M. Loginov, Dinamicheskie sistemy pri sluchainykh vozdeistviyakh. Prostye sredstva analiza, Izd-vo «Nauka», Sib. otd., Novosibirsk, 1983 | Zbl

[8] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1979 | MR | Zbl

[9] V. G. Zadorozhnii, L. N. Stroeva, “O momentnykh funktsiyakh resheniya nachalnoi zadachi lineinogo differentsialnogo uravneniya pervogo poryadka so sluchainymi koeffitsientami”, Differents. uravneniya, 36:3 (2000), 377–385 | MR | Zbl

[10] V. G. Zadorozhnii, “Momentnye funktsii resheniya uravneniya teploprovodnosti so sluchainymi koeffitsientami”, Fundament. i prikl. matem., 7:2 (2001), 351–371 | MR | Zbl

[11] V. G. Zadorozhnii, “O nakhozhdenii momentnykh funktsii resheniya zadachi Koshi uravneniya diffuzii so sluchainymi koeffitsientami”, Izv. RAN. Ser. matem., 66:4 (2002), 119–136 | MR | Zbl

[12] S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, “Uravneniya dinamo v sluchainom korotkokorrelirovannom pole skorosti”, Magnit. gidrodinam., 4 (1983), 67–72 | Zbl

[13] D. V. Semenov, “Usrednenie parabolicheskikh differentsialnykh uravnenii so sluchainymi koeffitsientami”, Matem. zametki, 45:3 (1989), 123–126 | MR | Zbl

[14] V. Lamburt, D. Sokoloff, V. Tutubalin, “Light propagation in a Universe with spatial inhomogeneities”, Astrophys. Space Sci., 298:3 (2005), 409–418 | DOI | Zbl

[15] D. A. Grachev, D. D. Sokolov, “Chislennoe modelirovanie rosta multiplikativnykh sluchainykh velichin”, Vychislit. metody i program., 8:1 (2007), 1–5

[16] F. R. Gantmakher, Teoriya matrits, Nauka, M., 2004 | MR | Zbl

[17] L. E. Elsgolts, Differentsialnye uravneniya i variatsionnoe ischislenie, Kurs vysshei matematiki i matematicheskoi fiziki, 3, URSS, M., 2000

[18] D. A. Grachev, “Vliyanie effektov pamyati v zadache o rasprostranenii sveta vo Vselennoi s neodnorodnostyami”, Vestn. Mosk. un-ta. Ser. 3. Fiz., astron., 1 (2008), 16–19

[19] D. A. Grachev, D. D. Sokolov, “Vysshie statisticheskie momenty resheniya uravneniya Yakobi so sluchainoi kriviznoi”, Trudy Pyatoi Vserossiiskoi nauchnoi konferentsii (29–31 maya 2008 g.). Chast 3, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2008, 83–86