On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 337-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an upper bound for the accuracy of a modification of the finite-step dynamical reconstruction algorithm proposed by Yu. S. Osipov and A. V. Kryazhimskii for the unknown control in the dynamical system from inaccurate data on its trajectory We establish that, for the case in which the control is a function of bounded variation and the subspace of the image of the matrix of its coefficients has constant dimension, the asymptotic order in the metric of the space $L_1[a,b]$ of its accuracy with respect to the input error is $1/2$.
Keywords: dynamical system, admissible control, Tikhonov functional, Cauchy problem, dichotomy, Euler method.
Mots-clés : dynamical reconstruction algorithm
@article{MZM_2010_87_3_a2,
     author = {A. Yu. Vdovin and S. S. Rubleva},
     title = {On the {Guaranteed} {Accuracy} of a {Dynamical} {Recovery} {Procedure} for {Controls} with {Bounded} {Variation} in {Systems} {Depending} {Linearly} on the {Control}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {337--358},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/}
}
TY  - JOUR
AU  - A. Yu. Vdovin
AU  - S. S. Rubleva
TI  - On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control
JO  - Matematičeskie zametki
PY  - 2010
SP  - 337
EP  - 358
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/
LA  - ru
ID  - MZM_2010_87_3_a2
ER  - 
%0 Journal Article
%A A. Yu. Vdovin
%A S. S. Rubleva
%T On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control
%J Matematičeskie zametki
%D 2010
%P 337-358
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/
%G ru
%F MZM_2010_87_3_a2
A. Yu. Vdovin; S. S. Rubleva. On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 337-358. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/

[1] Yu. S. Osipov, A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations. Dynamical Solutions, Gordon and Breach Sci. Publ., Basel, 1995 | MR | Zbl

[2] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR

[3] N. N. Krasovskii, Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR | Zbl

[4] Yu. S. Osipov, F. P. Vasilev, M. M. Potapov, Osnovy metoda dinamicheskoi regulyarizatsii, MGU, M., 1999

[5] A. V. Kryazhimskii, Yu. S. Osipov, “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Ser. tekhn. kibern., 1983, no. 2, 51–60 | MR | Zbl

[6] A. Yu. Vdovin, “Otsenki pogreshnosti v zadache vosstanovleniya upravleniya”, Zadachi pozitsionnogo modelirovaniya, Izd-vo UNTs AN SSSR, Sverdlovsk, 1986, 3–11 | Zbl

[7] V. I. Maksimov, L. Pandolfi, “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, PMM, 65:3 (2001), 385–391 | MR | Zbl

[8] A. S. Martyanov, “Otsenki skorosti skhodimosti odnogo algoritma dinamicheskoi rekonstruktsii”, Upravlenie, ustoichivost i obratnye zadachi dinamiki, Sbornik nauchnykh trudov, Tr. IMM, 12, no. 2, 2006, 119–128 | MR | Zbl

[9] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[10] A. Albert, Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977 | MR | Zbl

[11] P.-Ȧ. Wedin, “Perturbation theory for pseudo-inverses”, Nordisk Tidskr. Informationsbehandling (BIT), 13:2 (1973), 217–232 | MR | Zbl

[12] Yu. L. Daletskii, “O nepreryvnom vraschenii podprostranstv v banakhovom prostranstve”, UMN, 12:3 (1957), 147–154 | MR | Zbl

[13] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[14] B. Sendov, V. Popov, Usrednennye moduli gladkosti, Mir, M., 1988 | MR | Zbl

[15] A. Yu. Vdovin, A. V. Kim, S. S. Rubleva, “Ob asimptoticheskoi tochnosti v $L_1$ odnogo dinamicheskogo algoritma vosstanovleniya vozmuscheniya”, Upravlenie, ustoichivost i obratnye zadachi dinamiki, Sbornik nauchnykh trudov, Tr. IMM, 12, no. 2, 2006, 18–26 | MR | Zbl