Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_3_a2, author = {A. Yu. Vdovin and S. S. Rubleva}, title = {On the {Guaranteed} {Accuracy} of a {Dynamical} {Recovery} {Procedure} for {Controls} with {Bounded} {Variation} in {Systems} {Depending} {Linearly} on the {Control}}, journal = {Matemati\v{c}eskie zametki}, pages = {337--358}, publisher = {mathdoc}, volume = {87}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/} }
TY - JOUR AU - A. Yu. Vdovin AU - S. S. Rubleva TI - On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control JO - Matematičeskie zametki PY - 2010 SP - 337 EP - 358 VL - 87 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/ LA - ru ID - MZM_2010_87_3_a2 ER -
%0 Journal Article %A A. Yu. Vdovin %A S. S. Rubleva %T On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control %J Matematičeskie zametki %D 2010 %P 337-358 %V 87 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/ %G ru %F MZM_2010_87_3_a2
A. Yu. Vdovin; S. S. Rubleva. On the Guaranteed Accuracy of a Dynamical Recovery Procedure for Controls with Bounded Variation in Systems Depending Linearly on the Control. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 337-358. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a2/
[1] Yu. S. Osipov, A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations. Dynamical Solutions, Gordon and Breach Sci. Publ., Basel, 1995 | MR | Zbl
[2] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR
[3] N. N. Krasovskii, Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR | Zbl
[4] Yu. S. Osipov, F. P. Vasilev, M. M. Potapov, Osnovy metoda dinamicheskoi regulyarizatsii, MGU, M., 1999
[5] A. V. Kryazhimskii, Yu. S. Osipov, “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Ser. tekhn. kibern., 1983, no. 2, 51–60 | MR | Zbl
[6] A. Yu. Vdovin, “Otsenki pogreshnosti v zadache vosstanovleniya upravleniya”, Zadachi pozitsionnogo modelirovaniya, Izd-vo UNTs AN SSSR, Sverdlovsk, 1986, 3–11 | Zbl
[7] V. I. Maksimov, L. Pandolfi, “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, PMM, 65:3 (2001), 385–391 | MR | Zbl
[8] A. S. Martyanov, “Otsenki skorosti skhodimosti odnogo algoritma dinamicheskoi rekonstruktsii”, Upravlenie, ustoichivost i obratnye zadachi dinamiki, Sbornik nauchnykh trudov, Tr. IMM, 12, no. 2, 2006, 119–128 | MR | Zbl
[9] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[10] A. Albert, Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977 | MR | Zbl
[11] P.-Ȧ. Wedin, “Perturbation theory for pseudo-inverses”, Nordisk Tidskr. Informationsbehandling (BIT), 13:2 (1973), 217–232 | MR | Zbl
[12] Yu. L. Daletskii, “O nepreryvnom vraschenii podprostranstv v banakhovom prostranstve”, UMN, 12:3 (1957), 147–154 | MR | Zbl
[13] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl
[14] B. Sendov, V. Popov, Usrednennye moduli gladkosti, Mir, M., 1988 | MR | Zbl
[15] A. Yu. Vdovin, A. V. Kim, S. S. Rubleva, “Ob asimptoticheskoi tochnosti v $L_1$ odnogo dinamicheskogo algoritma vosstanovleniya vozmuscheniya”, Upravlenie, ustoichivost i obratnye zadachi dinamiki, Sbornik nauchnykh trudov, Tr. IMM, 12, no. 2, 2006, 18–26 | MR | Zbl