Keywords: singular locus, generic hypersurface, weighted projective space, birationally superrigid variety, uniruled variety.
@article{MZM_2010_87_3_a17,
author = {R. J. Mullany},
title = {Fano {Double} {Spaces} with a {Big} {Singular} {Locus}},
journal = {Matemati\v{c}eskie zametki},
pages = {472--476},
year = {2010},
volume = {87},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a17/}
}
R. J. Mullany. Fano Double Spaces with a Big Singular Locus. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 472-476. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a17/
[1] V. A. Iskovskikh, Yu. I. Manin, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl
[2] A. V. Pukhlikov, UMN, 62:5 (2007), 15–106 | MR | Zbl
[3] A. V. Pukhlikov, Izv. AN SSSR. Ser. matem., 52:1 (1988), 229–239 | MR | Zbl
[4] A. V. Pukhlikov, Algebraicheskaya geometriya – 2, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 24, VINITI, M., 2001, 177–196 | MR | Zbl
[5] I. A. Cheltsov, Matem. sb., 199:2 (2008), 131–148 | MR | Zbl
[6] I. A. Cheltsov, Matem. sb., 195:10 (2004), 109–156 | MR | Zbl
[7] A. Pukhlikov, Birational Geometry of Singular Fano Varieties, arXiv: math.AG/0807.3886
[8] A. Pukhlikov, Birational Geometry of Fano Double Spaces of Index Two, arXiv: math.AG/0812.3863
[9] V. V. Shokurov, Izv. RAN. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl
[10] Flips and Abundance for Algebraic Threefolds (Salt Lake City, 1991), Astérisque, 211, ed. J. Kollár, Soc. Math. France, Paris, 1992 | MR | Zbl
[11] A. Corti, Explicit Birational Geometry of 3-Folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl